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A Weakly-Typed Higher Order Logic
with General Lambda Terms and Y Combinator

James H. Andrews 1

Department of Computer Science

University of Western Ontario

London, Ontario, Canada N6A 5B7

andrews©csd, uwo. ca

Abstract. We define a higher order logic which has only a weak notion of type, and which permits

all ternls of the untyped lambda cah:ulus and allows the use of the Y combinator in writing recursiv(,

predicates. The consistency ,)f the logic is maintained by a distinction between us(' and mention, as in

Gilmore's h)gics. \Ve give a consistent model theory and a proof system which is valid with respect to

the model theory. W(, also girt' examples showing what formulas can and cannot /)(, used in th(' logic.

1 Introduction

The type system of a new higher order logic must be designed with care. Whenever we try to make the logic

more expressive t)y t)ermitting more well-tyl)ed terms, we risk making the h)gic inconsistent; for instance.

Church's higher order logic [Chu-10] cannot consistently be extended to pernfit the rather modestly-extended

terms of ML [Co(t86]. However, greater expressivity allows us to make more concise, intuitive, and general

descriptions of the concepts we want to describe.

.Most higher order logics follow the pattern of Church's original." one or more types are assigned to every

term, and the type syst.eltl is enfi)rced with each rule of inference of the h)gie. Recently, however, Gihnore and

others [Gi197,AK96] have t)een ext)loring higher order logics with only a weak notion of tyt)e, and no type

enforcement across all terms. Consistency is maintained, not by types, but by a rigorous distinction between

"use" and "mention" of predicate variabh_s. In such logics, all the terms of the untyped laml)da-caleulus are

perlnitted, and lambda-applieation can [)e used at the level of formulas as well.

There is a price to he paid f()r the greater expressiveness in this area, of course; certain varial)les cannot

be used in certain positions in axioms. We have reason to believe, however, that the restriction may ilot I)e

important for many computer s('ience at)plications. These logics give a very different view of higher order

logic, which may 1)e useflil in places where traditional higher ord('r logics are not able to go.

In this paper, we extend Gilmore's ideas on the logic NaDSyL [Gi197] by defining a logic which flarther

weakens the type system, allowing the use of the Y comhinator. This weakening allows general recursive

t)redicates to be defined and passed as parameters to other recursive predicates. We also present the proof

system in the form of a conventional sequent calculus.

Gihnore himself has recently moved in the direction of stronger types, producing a logic intermediate

hetween NaDSyL anti Chur(:h's tyt)e theory [Gi101,Gi102]. The most relevant other related work that we

are aware of is that of Kamareddine, who defines a logic which gives a type to the Y combinator without

I)ermitting general lamt)da terms [Kam92]. Our model theory is also similar in many ways to that of Chen,

KiDr and Warren's HiLog [CK\V89].

In se(:tion 2, we give a syntax of terms and a semantics for the logic, anti prove the semantics consistent.

In section 3, we give a proof system, and prove it valid with respect to the semantics. In section 4. we

illustrate the expressiveness of the logic, and the bounds on that expressiveness, by showing what forms

of terms can and cannot b(' us(.d in it; we also speculate about the consequent useflllness of the system in

computer science and theorem-tJroving. In section 5, we give some conclusions. This is work in l)rogress: we

have not yet proven cut-elimination, although the proof system is designed to facilitate it; and we have not

undertaken a thorough con,l)arison of the recursive predicate constructs to those in other higher order logics.
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2 Syntax and Semantics

Here we present the elementary syntax of tile language, define simple term models for the logic, and prove
some consistency and substitutivity results.

2.1 Elementary Syntax

There are two sorts of variables, use an(t mention. "_, assume sets ,g,, of use variables and ,t'm of mention

variables; the set A' of variables is ,_'_ U ,t;,. We assume a set T_ of t)redicate names and C of constants. The
syntax of terms T in BNF is:

T ::= x I J, I,1I, I (rr) I :U'.7-
where x is a varial)le; p is a predicate ilame; c is a constant; and Ix" is one of tile connectives rind, not,

and forall. "_Ve use .r,y, z as metavariahles standing for either use or mention variables, and X, }', Z as

metavariat)les standing for use variables in particular. We use p, q, r as metavariables standing for predicate

names, an(l a. b, c as metavariables standing for constants. \Ve use ,lI,)," as metavariables standing for

arbitrary terms. All metavariables may be t)ossibly primed or subscripted.

As is standard, we write the ternl (... ((AI N1)._:2)... Nn) as (/ll N1 ... Nn). We write (and M N),
0,ot M), and (forall Am.M) as M&N, _:_r and Vx.M respectively. We define tile notions of free variables

and variable substitution in the usual way. We define ct- and fl-convertibility in tile usual way. treating
connectives as if they were constants. Two terms are a:3-equivalent if they are convertible to the same term
via an arbitrar.v number of o- or 2?-conversion steps.

The notions of "use term" and "mention term" are central to the semantics and proof theory. A mention
term is a term with no free use variables. A use term is a use variable, a predicate name, or a use term

applied to a mention term; in other words, a use term is one of the form (M N1 ... Nn), where M is a use
variable or a predicate name, and each Ni hits no fl'ee use variables. The significance of use terms is that

they are the only ones given an a priori assignment of truth value in the semantics. Examples of use terms

include (p a b), (X a b), (p q r), (p x y), and (X x p), where x, y are mention variables. Examples of terms
which are not use terms are (c a b), (x a b), and (p a X), where x is a mention variable.

We denote the sets of use terms and mention terms by T_ and T,,n, respectively, and the sets of ground
use and mention terms by .G,, and G,,,, respectively. We denote the set of all terms by T. Terms which are

neither use nor mention terms are. still considered well-formed, and can appear in formal derivatkms.

2.2 Model Theory

To show consistency and to provide a reference point for the proof theory, we define simple term models.

These models correspond to Gilmore's models for NaDSyL [Gil97] in the same way that standard models
correspond to nonstandard, Henkin-style models [Hen50]: they do not require the model to select denotations

for use variables from a single given set. This relaxation simplifies tile semantics.

We use the symbols T, F to denote the truth values "true" and "false", respectively. A model consists of

a total function v and a countably infinite sequence _0, vl, v.),.., of total functions, such that:

- v : X,,, _ !3._ ;

- If N and N' are a3-equivalent mention terms, then v(N) = v(N');
- Vo : (2(,, tO iP) _ {T, F};

- For every i > 0, vi : (X,, U 7') _ (Gi _ {r, F}); and

- If N and N' are c_3-equivalent mention terms, then vi(M)(..., N .... )) = vi(M)(..., N',...)).

We now extend the flmction v to all mention terms. Let tile extension vs of v w.r.t, a set S C ,¥ of
variables t)e defined as follows:

- vs(x) =xifx E S;

- vs'(x) = v(x) if x _' S but x E X.,;

- re(M) = M if M is a predicate name, constant, or connective;

- vs(:_l .\') = (v._(:_l) vs(X));

- vs(Az.M) = ),z.(v(su_,i)(M)).
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We then write v(3I) for v{}(3I). Note that v(Al) is undefined for free use variabh, s. or indeed for any term

containing a flee uso variable.

Given a model (v, vo, cl. v._,,...), we also extend the functkms ci to all use terms. We define

,,,(_i N, ... ,\5)(.\:[, .,N;) to be ,,_j__,_(._I)(,,(X,), ,,(_\_)..'q, . V......... : i), for all i > O. j > 1. where

M E (.l',, U 79), .'V_. E T,,,, for all I < k < j, and N_'. E .G,, for all 1 < k < i.

Given a use or mention variable :r, a model .%4' = (v'.v/).v't,...) is an x-vaviar, t of another model

._-'_ = (U. lrO, N 1 .... ) if. for all mere itm variables y not identical to :r. r'(!l) = v(y). and for all use variables l"

"(_') G()*) for all i > 0.not identical to x. t, =

A signed term is a term precvded by a + or - sign, denotiIlg truth or falsehood. We say thai a model

.91 = (v, re, v],...) c.ntail.s a sigm'd term :kll at stage i, ill symbols ._.d _i _:l/. just in the following eases.

- .b'[ _0 +(A[ s¥1 "¥2 ... :V,,) if A[ E (,-t/'u U "-]P),and

v, (M)(v(Nl), v(N.2 ) ..... v(A', )) = T.

- .M _o -(3I 3,'1 :V2 .... \:,,) if 3I C (.'1.',, U T)), and

r,, (M)(r(N_), _,(N.2),.... c(?,,, )) = F.
- _i+l +(3I&N) if.M _; +M and .91 _i +N.

- _i+l -(3I&N) if.U1 _i --3I or ,91 _i -N.

- ._4 _i+1 +(-_M) if.U1 _, -3I.

- .91 _i+l -(--,M)if.91 _i +31.

- .91 _i+1 +(V:r.3l) if for every x-variant of .t4, .91' _i +:_1.

- _i+1 -(Vx.3l) if for some :r-variant .L4' of .%4, .91' _i -M.

- .91 _i+1 +((Az.M) .Vl N.2 ... N,) if.UI _i +(M[a" := Nt] N.2 ... "Y,,).

- .91 _i+_ -((Ax.M) :\'_ A:2 ...N,,)if' .91 _i-(M[x := N_] N2 .... V,,).

We say that entails ±M. in symbols .t4 _ 4-3I, if there is sonic i > 0 such that .t4 _i 4-:11.

As an examIfle, consider a model .91 and a use variable X. By the definition of model, either .L4 _ -X

or _ +X. Therefore either .%4 _ -X or .91 _ -(-_X), so ,91 _ -(X&(_X)), and thus .L4

+(-,(X&(_X))). Because this is true for every ._, it is also the case that ._ _ +VX(-_(X&(_X))). Ex-

pressing this fornmla more conventionally, .91 _ +VX(X =)> X).

An important point to note is the condition on the clause for -(M&N) above. -(3[&N) is entaih, d if

eith.er -31 or -N is entailed: the other conjlmet does not have to be assigned a truth value at all by the

model. This is in contrast to Gilmore's semantics for NaDSyL [Gi197], in which the other conjunct had to be

assigned a truth value. The relaxation of the restriction makes the Y-combinator nlor{: useful, l,Ve ean never

entirely eliminate tile Y-conflfinator from a typical recursive predicate term by beta-coI,version, and thus (:an

never convert a term with a Y-combinator into one in which all atomic terms are use terms. However. the

-(M&N) clause allows, for instance, (M&N) to t)e false when AI is false, regardless of whether 3,: contains

an irreducible term such as a Y-('ombinator.

2.3 Consistency and Substitutivity

Here we prove that it is impossible for a term to be both true aim false in a model. We also prove some

results concerning the substitution of mention terms for mention varial)les and use terms for use variables.

These sul)stitutivily results will be useful in later proving soundnt,ss of the proof system.

Theorem 1. For" ever'y model ._l and every term M. it is not th,c case that both .91 _ +31 and .t4 _ -M.

Proof. If .91 _ 4-.11, then fi)r .-ome i _> 0, fl'I _i ±M. Tile t)roof is by induction on i. If i = 0. then M

must be a use term, and by definition the model nmst assign one unique truth value to the term. Otherwise

(i > 0), cases are eli tile form of 31. If M is (311&312), then .91 _,. +M iff.W _i-i +M_ and .W _i-_ +312.

But in this case. by the IH, we can have neither .91 _i-I -M1 nor ._ _i-I -M2, and therefore we cannot

have .91 _ -M. Conversely, if .t4 _i -M, then either ,9l _i-1 -3I_ or .91 _ I -M.2. But in neither ease

can we have both .t4 _i-_ +M_ and 9/ _, ) +M2, and theretbre we cannot have .91 _> +31. The other

cases follow the same straightforward reasoning. []

We define the complexity of a term M, in symbols k(AI), as follows, k(Ax.M) = k(3I) + 1; k(Al N) =

nmx(k(M), k(N)) + 1; and k(M) = 0 when M is a variable, constant, predicate name or connective.
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Theorem 2. Lc_t x be a mention variable and M a mention term. For every mention ter'm N and every

model .t4 such that ,:(.r) = v(M), v(N) = v(N[x := M]).

Proof. By induction on the complexity of N. Cases are straightforward. []

Theorem 3. Let x be a mention variable and M a mention term. For" every i > 0, every term A' and every

'model f14 such that v(x) = v(M), ._ _ ±N _,:t4 _i =L:V[x := M].

Proof. By induction on i.

If i = 0, titan N is a use term, of the form (No NI .V.2 ... N,,), where N() is a use variable or predicate

name. By the definition of _, ,._4 _0 +(:\3 Nt 55 ... N,,) iff t,,, (No)(v(N1), v(N.2),..., v(N,_)) = T. Because

of the last theorem, this is true iff v,(N0)(v(Nt[x := M]),v(X2[x := M]),..., v(N,[x := M])) = T. (x does
not al)t)ear fre(, in ,\o, so N0[x := M] is No.) By the definition of _ again, the t)revious statement is true iff

-_,/_ _11 "]-(.X'0 +\+i[J" := .'_-/] +\2[./r := J'_l] ... A¥,,[3: := ,'_1]); that is, iff f14 _o +(:V() N] N._, ....\',,)[x := .lZ].
The sul)case with - instead of + is similar.

If i > 0, then one of the other cases of the definition of the _+ relation holds. The cases of the propositional
c()mmctives are straightfi>rward.

If ,\: is Vy.+¥', then we assume without loss of generality that y is not x and that y does not appear in

M..t4 _i +(Vy.N') iff for every y-variant f14' of ,91, f14' _i-1 +N'. By the induction hypothesis, this is

true iff for every y-variant .t4 t of rid, .'M' _i--I +N'[x := ._ll]. Because of the assumption, this is true iff

.t4 _, +(Vy.N'[x := M]); that is, iff ,_t4 _ +(Vy.N')[x := M]. The subcase with - instead of + is similar.

IfN is ((),y._\),) NI N2 . ..N,_), then ,,t4 _, +N iff,M _i _ +(No[y := N_] N2 ... 3,',). By the induction

hypothesis, this is true iff .M _,__ +((N0[y := N1])[x := ._I] _\'2[x := Jlir] ... Nn[X := _1_/]). We assunle

again that y is not x and that y does not appear in i_l. Therefore because of the properties of substitution.

this is true iff.M _i-1 +((-¥0[x := M])[y := (N,[x := 3I])] ,\)Ix := M] ... Nn[x := M]). By the definition

of _, this is true iff ,M _i +((Ay.N0[x := M]) N,[x := M] :\:2[x := M] ... N,[x := M]); that is, iff
.M _ +((Ay..V0) N_ A½ ... N,,)[x := M]. The sul)case with - instead of + is similar. []

Theorem 4. Let X be a use variable and 51 a use term. For every i > O, every term N and every model

,_ such that vj(X) = vj(.l/') for every j > O, f14 _i +N iff ,M _ +NIX := M].

Proof. Similar to the proof of the last theorem, except for the base case of the induction.

If i = 0, then N is a use term, of the form (N0 N1 N2 ... N,), where N0 is a use variable or predicate

name and the N,s ha_,e no free use variables. If ,\o is not a use variable, or is a use variable different from
X, then NIX := 3I] is N, and the result follows immediately.

If No is X, then N[X := M] is (M N l N2 ... N,_). By the definition of _, f14 _0 +(X N_ N2 ... Nn) iff

v,_ (X) (v (Nl ), v (_\) ) ..... v (N,, ) ) ) = r. By assu mp tion. it is al so the case th at v,, (M) (v( Na ), v (N2),... , v ( N,_ )) ) =

T. If M is a use variable or predicate, then the result fi)lh)ws immediately. Otherwise, M is (M0 ?'[1 . -_[m).

By the definition of v,,(3I),

v,, (_l)(v(N,), v(.¥2),..., V(Nn))) = T = vm+n (s_l_'0)(v(__,I1).... , v(i_lm), V(Nl) .... , v(N,+ )))

Therefore .:t4 _o +(M0 M, ... M,, N1 ... Nn). Now it is also the case that

('_I0 J_il ''- !_[m NI ".. -_) = ((-_I0 ]_/'1 -.. _'[m) Nl ... J_n) = (i_I _¥1 -.. _\'n) ---- (X[X :-- ,_,I] N 1 .. _\rtz )

Since X does not appear free in the Nis, this last term is equivalent to (X N1 ... N,)[X := M], or
N[X := M]. Therefore ,_t4 _0 +N[X := M], as desired. The subease with - instead of + is similar. []

3 Proof Theory

Here we present a proof system for the logic, in the form of a classical sequent calculus similar to Gentzen's

LK. We give notational preliminaries in section 3.1. In section 3.2, we prove soundness of the proof system

with respect to the model theory; in section 3.3, we briefly discuss the prospects for cut elimination.
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Reflexive entailment:
F, M _- .3. M'

where 3I. M' are use terms and M =.3 M'

F_-_I

Thin/l: F, M _- .A Thin/r:

Con/l: F, M. M _ A
F. M _- A Con/r:

&/l: F, M. N F A
F, M&N _--A &/r:

-_/1: F k A. M
F,--M'_- A _/r:

v/l: I", .,'_t[_:= :v] u 4
F, Vx.M _- .1 V/r:

where x is a use (mention) variable, and N is a use

(mention) term

i_/l: r, (._t[x := x,] N:, ... X,,) _-__
F, ((_:r.M) N, _\:2 ... ;%) _-A /_/r:

Cut: F b ,..I. M M, F _- _I

F_-A

F_-A

F _- .3, 31

F_- A,3I, M

F _- .3, M

F_- A.M FF A. N

F _- A, M&N

F,M_-A

F I- A, Mix := y]

F _- _, Vx.M

where x is a use (mention) variable, and y is a use

(mention) variable not apt)earing free in F, ._._,5I

v _ (.,_I[:,.:= x_] _% ... :_;),.a
F + ((Ax,3I) N_ .V,2 ... ,% ), A

Fig. 1. Proof rules for proof system G,
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3.1 Notation

A sequent is an ordered pair of finite multisets of terms, written in the h)rm F _- _. We will use F and

as metavariables standing for nmltisets of terms; the notation F, .5 will mean F t_ .3, and F. M will mean

/" t_ {M}, where +Uis multiset union. We present the proof system in the form of Gentzen-style l)roof rules
for sequents in Figure 1.

In Gihnore's original presentation [Gi197], he defines a semi-decidabh, set of formulas: the restriction on
the V/l rule then essentially ensures that the term in the Ul)t)er sequent must be a formula. The condition

here is weaker, but simplifies the t)resentation.

Since the rul(,s define a complete set of classical connectives, it is clear that we can introduce all the

other classical ('onne(:tives, such as V ((tisjunction), -+ (imt)lieation) and S (existential quantifier). We will
use these Colme(:tives in the sequel without further comment.

3.2 Soundness

We say that a sequent F _- _5 is valid in a model ,'_ if either there is an M E F such that ._¢'1 _ -M, or

there is an N E _5 such that .M _ +N. We say that a sequent F 1--_5 is valid if it is valid in all models.

Theorem 5. Every provable sequent is valid.

Proof. By structural induction on the derivation. Cases are on the last rule applied. In the fl)llowing, we

write ._ _ -F to mean that for all M E F, _ -M.

- Reflexive entailment: let the sequent be F 3I F- B.M' such that _'_I =aJ ilI' and M is a use term.

Assume that .'M _ -F and ..M _ -M. But since M is a use term, either _ -M or .M _ +M;
hence, _ +M. By the definition of model, ._ _ +M' as well.

- Thin/l: let the lower sequent be F, M F- _5. Assume that .t4 _ -F and .M _ -M. Then by the induction

hypothesis (IH) on the upper sequent, jt.t _ +N for some N E _5.

- Thin/r: Assume that _ -F. Then by the IH on the upper sequent, f14 _ +N for some N E A.
- Con/l, Con/r: straightforward.
- &/l: let the lower sequent be F, M&N t- A. Assume that .'¢/ _ -F and ,_ g= -(M&N). Then neither

-M nor .'v/ _ -N, because otherwise ..t4 _ -(M&N). Thus, by the IH on the lapper sequent, for

some N' E A, .,t4 _ +N'.
- &/r: let the lower sequent be F t- J,M&N. Assume that ,_ _ -F. There are two subcases. (a) If

._ _ +N' for some N _E _. then the result follows immediately. (b) Otherwise, by the IH on the upper

left sequent, it must be the case that ,._ _ +_I; and by the IH on the upper right sequent, it must be

the ease that .'vt _ +N. Thus, .,91 _ +(M&N).
- _/1: let the lower sequent be F,-_M t- A. Assunw that .M g= -F and _d _ -(-_M). Then g= +M,

because otherwise ._4 _ -(-,M). Therefore by the IH on the upper sequent, there must be some N E .3

such that.._/ _ +N.
- -_/r: let the lower sequent be F t- A,--M. Assume that ._ _= -F. There are two subeases. (a) If there

is some N E -5 such that .t4 _ +N, then the result follows immediately. (b) Otherwise, by the IH on

the upper sequent, ._ _ -M; therefore .,_ _ +(_M).
- V/l: let. tile lower sequent be F, Vx.M _- A. Assume without loss of generality that x does not appear free

in F, A,N. Assume that _ -F and .,M _ -(Vx.M). Let ._ = (v, v0, vl .... ). We know that for any

:r-variant .91' of .91, ._' _6 -3I, because otherwise .91 _ -(Vx.M). There are two subcases. (a) If x is

a mention variable, this means in particular that ._d' _= -M where )d' = (t/, v_, v_,.. .) is an x-variant

of f14 such that v'(x) is the same as v'(N). Therefore by Theorem 3..t4' g: -Mix := N], and by the
\rlinduction h.vpothesis, there must t)e some _ E A such that .Uf _ +N _ Since x (toes not appear free

in ?C it must be the ease that _ +N' as well. (b) Similarly, if x is a use variable, this means that
._4' _ -M where .t4' (v', " ,'= %, _I,--.) is such that vl(x) is the same as vi(N ) for all i _ 0. The proof

proceeds similarly, using Theorem 4.
- V/r: let tile lower sequent be I" t- _5, Vx.M. Assume that g= -F. There are two subeases. (a) If there

is some N E _5 such that .M _ +N, then tile result follows immediately. (b) Otherwise, by the IH on

the upper sequent, .t4 _ +Mix := y]. But then for the x-variant .t4' of .'UI in which v(x) = v(y) (if x

is a mention variable), or vi(x) = vi(y) for all i > 0 (if x is a use variable), we have that .9/' _ +M.

Therefore ._ _ + (Vx. M).
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ix (_x:r(-,(x = J,)))) F (x (),:r(_(.,' = :r))))

_- (X (),x(_(x = _,)))) _ (x: (,Xx(-_(:,, = .r))))
_- VX.((X ()_x(--(._ = _')))) _ (X (),:,'(_(:,: = _')))))

F- ((Ax(-,(z = _,))) = (,X.r(-,(.r = .r))))

_((_x(_(:r = x))) = (,_,(_(.r = :r)))) _-

((),z(-,(:r = _,))) (,X:r(_(:,' = .r)))) _-

_- -((,_z(-,(x = z))) (_,(-,(:r = :r))))

_- (,xsr(-(z _,))) (,X_,(-_(_,= ._t))

Fig. 2. Fhe proof that the empty set is in the Russell set.

- ;_/1, :?/r: Straightforward applh:ations of the induction hypothesis.

Cut: let the lower sequen_ be F _- -], and the cut term be M. Assume thai ,t4 _ -F. There are two

subcases. (a) If there is sorer N E .3 such that f14 _ +N, _hen the result follows immediately. (b)

Otherwise, from the IH on thr upper left sequent, ,_4 _ +M; hence ..t4 _ -31. Therefore by the IH on

the upper right sequent:, there must be s()me N E .3 such that .M _ +N.
[]

3.3 Cut Elimination

Because the proof system is valid with respect to the model theory, it. inherits the model theory's consistency.

Despite this, we would also like t_) prove cut-elimination. This woul(t demonstrate that the proof system is

comt)ositional in a useful way. \Ve have not completed the proof, but the proof system has been designed

to allow it to proceed. For instance, any use term should be able to be substituted for a free use variable

in a valid derivation, facilitating The important subcase of cut-elimination where the cut term is a (miversal

quantification on a use variable.

4 Expressivity

Here we illustrate the expressivity of the logic, and the limits of that expressivity. In Section 4.1, we define

and prove theorems about the Russell set. In Section 4.2, we show that the Y combinator can be defined arm

use(t, hi Section 4.3, we show that Gilmore's operators for constructing recursive sets can still be used, an(t

still have the effect of giving us proofs by induction without having to define an explicit induction rule. In
Section 4.4, we show formulas that cannot be used in a truly usefill way, and speculate on what consequences

this has for the logic. Finally. in Section 4.5, we discuss "nonsense formulas" that (:an arise given the syntax
and proof theory of the logic, and propose a familiar solution.

In this discussion, we will tak_ _ the notation 3I = N as shorthand for Frege's "identity of indiscernables"
property, VX.((X 3I) _ (X N)).

4.1 The Russell Set

The Russell set R can be expressed as Ax(_(x x)), and stands as usual for the set of all sets which are not

members of themselves. Given that the empty set. E de=fA:r(--,(x = x)) is not a member of itself, t)ut the set

of all terms A d_f Ax(x = x) is a member of itself, we should be able to prove both (R E) and _(R A).

Figures 2 and 3 show these dt_rivations. (In all derivations in this paper, we occasionally insert "'steps" in

which we simply expand definitions.) These derivations demonstrate that the logic of this paper retains the

expressiveness of Gihnore's NaDSyL [Gi197], which can also express these derivations. It also demonstrates

that the logic is in this particular way more expressive than Church's [Chu40] and Kamareddine's [Kam92],
in which the Russell set cannot t)e assigned a type and thus cannot appear in derivations.

The Russell set is not particularly useflfi by itself, but its presence is an indication of the difference

t)etween Gihnore logics and traditional type theories.
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(x (,_:(:r = .,.))) _-(x (A:_,O,= _))1
_-(ix (Xr(3,= ,r)))_ (x (A_,(:r= x))))

_-vx.((X(m,(:_,: _,)))_ (x (m,(_,: _-))))

((a_,(_. : _.)) : (Xr0' : x)))

-,((,x_,(_. = _-)) (,xx(_ = _,))) _-
((m:(-,(_, J,))) (,xz(x = 5))) _-

_- -,((m.(_(x x))) (_(.r : x)))

Fig. 3. The proof that the set of all terms is not in the Ilussell set.

_- (s 0) = (,_ 0) }- ((Y N) 0)

((._ 0) : (._ 0)_:((V N) 0)))

}--_y((.s 0) = (s y)A((Y N) .q)))

_- (._0) = 0, 3y((,_ 0) = (._ ._j)_:((Y N) .u)))
_- ((._ [)) : OV 3y((s {1)= (.s !/)&((Y N) y)))

}- ((Ix.Cx = OV 3y(x : (,s y)&((Y N) y)))) (s 0))

Fig. 4. Part of the proof that (s 0) is an integer.

4.2 The Y Combinator

Let V(w) be At,.(w (v v)). Then Curry's Y combinator can be defined as Y d_=fAw.(V(w) V(w)). We define

the set of integers as consisting of 0 and all terms of the form (s t_), where ,s' and 0 are here assumed to be

constants and n is an integer. If we define N d___erAu.Ax.(x = 0 V 3y(x = (s y)&(u y))), then (Y N) expresses

the set of integers.

Apt)lying beta-reduction and definition expansion/contrat:tion to this term yields the following.

(Y N) : (lw.(V(w) V(w))) N

= (V(N) V(N))

= (At,.(N (v v))) V(N))

= (N (V(N) V(N)))

= (N (Y N))

= (Au.Ax.(x = 0 V 3y(x : (sy)&(u y))) (Y N))

= Ax.(x : OV 3y(x = (s y)&((Y N) y)))

Figure 4 shows part of a derivation of the term ((Y N) (s 0)); this may be read as the statement tha_

the term (s 0) is an integer. The omitted parts of the derivation, at the top, are straightforward given this

derivation and the previous derivations. This derivation demonstrates that the Y combinator can be used

in this logic, as in Kamareddine's [Kam92]. The Y ('ombinator is disallowed in Church's T system [Chu40]

and in Gihnore's ITT [Gil01,Gil02] because it cannot be assigned a type; it is disallowed in NaDSyL [Gi197]

because no term containing it could be considered a "formula".

Despite the presence of the Y combinator and implication, Curry's paradox [HS86] is avoided because

the sequent M k- M is not an axiom if M is an application of a lambda-at)straction. An attempt to prove
Curry's paradoxical formula leads only to an infinite regress.

4.3 Gilmore's Operators

Gihnore [Gil97] defines a kind of "intersection" operator which can be used to construct recursively-defined

sets. The intersection operator L is AX.Ax.VI'((X Y) _ (Y x)); given a property M and a term N, the

term (L M N) will be true if N is a member of all sets with the property M. Let Z be the property of

being a zero-successor set, i.e. the property of a set containing 0 and all of its successors. Z can be defined

as AZ.((Z 0)&Vy((Z y) _ (Z (s y)))). Then the term N' de__¢(L Z) expresses the property that an individual

is in every zero-successor set; that is, N' stands for the set of natural numbers.
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(M .r) F (M a:)

(,_i :/) > (_aI (,_:q))
((M .,i)a (.'_I (._;J)))

((M o)&v;j((:_,' :v)_ (M 6, ;_))))
_- (M _.), ((M o)&v:j((._r :_)_ (M (._ v))))

(((M (t)g:V,v((._I :,j)_ (M (,_ y)))) _ (M .)) _ (M x)
w((O" o)&vv((_ .v)_ ()" (._._j))))_ (_ _')) F (._ 4

(N' x) b(M x)

_- (N' x) => (31 x)

F Vx((N' x) _ (a, .))

Fig. 5. Part of a proof that the use term ell expresses a property held by all integers.

Apl)lying equivalences and definition exi)ansions yields the following equivalent definition for N':

(L Z) = ((AX.a.r.V}'((X I') _ O" "))) Z)

= :_..w((z _) _ (_ ,))
= _,.w(((2,z.((z ())_.-v:,j((z:j) _ (z (., .v))))) Y) _ (_ ,)))
= Xr.W'(((_ o)_v:,j((_" :j) _ d" (." ;'1))))_ (_" x))

The signit-icanee of this ext)ression, as ill gihnore's previous logics, is that a proof of a prop('rty of all

natural numbers automatically c(msists of a proof by induction. Figure 5 shows a generalized proof of the

term schema Vz((N' .r) _ (M x)), that is "property 31 holds of all integers", for any given use term _11.

The derivation follows the general pattern of reducing the problem of proving the term to the problem of

proving (M 0) and Vy((M y) => (M (s y))).

This latter property may he use.tiff in automated theorem proving, since it allows us to prove properties

concerning recursively defined sets by induction, without explicitly requiring induction rules or tactics.

Naturally. other tactics may be required, and it remains to be seen whether they are easier or harder to use.

4.4 Disallowed Formulas

Terms such as (X Y), where .\" mM )" are hath free use variables, cannot appear in axioms. As a consequence

of this, they are not r(,ally useflfl in any derivation except when one or both are boun(1 by a lamt)da, although

they are not excluded 1)y any' type restriction. The logic of this paper shares this property with Gihnore's

two recent logics [Gi197,Gi101].

In contrast, of course, in most higher order logics fi'om Church's [Chu40] to Kamareddine's [Kmn92], a

term of the form (X }') is allowed as long as the types are approt)riate. This leads to many natural uses

of t)redicate variables applied to others, such as that of assigning a value to a predicate variahle and later

applying it to another predicate. The fact that applying a variable to another comes so naturally for us may
lead us to t)elieve that we cannot do without it.

However, note that non-recursive and recursive properties of general predicates can still be defined

in tim logic of this I)aper. The property that a predicate is transitive, for instance, can be defined as

AX.(VxVyVz.((X x y)&(X y z) _ (X x z))). This term can be applied to any predicate or use variable.

or indeed to any term, including one using the Y combinator. The transitive closure operator on a binary

relation can be defined using the Y combinator: if T is )_Z)_X,_x)w.((X z y) V 3z((X x z)&(Z X z y))).

then ((Y T) M) is the transitive closure of a term M. Again, M can be a predicate name. a use variable, or

another term defined using the Y combinator. Applying ((Y T) M) to two terms will result in a term which

can have a derivation of the sam,, general form as that in Figure 4.

This property gives us reaso_t to believe that the logic of this paper can still be useflfl in working with

higher order recursive definitions. It will ahvays be impossihle to use terms such as VXVI'((.Y 1") => ...) as

formulas, but such formulas may not be needed for some applications.

Moreover, note that a us(, variable can be applied to a particular predicate, such as in the term (X p).

This allows us to, for instance, st ate assumptions about the application of p to other terms on the left-hand

side of a sequent, and assert properties of p itself on the right-hand side. V_ simply cmmot generalize from

a proI)erty about a given l)re(licate p to a prot)erty of all use tern>.
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4.5 Nonsense Formulas

V_'e have so far ill this paper restricted our attention to f()rnmlas that "make sense" in all intuitive way.

However, readers have probably noticed that there are many terms which can be written and can appear

in formulas but don't nlake sense, such as (and and), (Y x), and Vx.(e). There are also nlany terms which

make sense but cannot be construed as fornmlas, snch as Ax.(x = x); if we try to buihl a derivation of an

ill-constructed fornmla, we may be faced with such a term in a fornmla position.

The natural way to address this problem is a familiar ()lie: t.o impose a type system on the ternls of

the h)gic. Note, however, that since types are not needed for consistency, we can choose ore" type system

based on considerations of expressivity. For instance, the 3" eombinator can be given a type in type systems

with fixpoint types and universal types, such as those described l)y Cardelli [Car96]; such type systen_s

are normally inaccessible to us in higher order logics because they allow such problematic terms. [7sing

Gilmore-style logics, we can choose our type system to include such terms if we so desire.

The weak type system of use and mention variables used in the logic in this paper does no! seem to

interact with a more conventional type system except in one respect. Let us assume that o is the type of

t)rol)ositions. It does not seenl to make sense to allow constants and mention variables to have a type ending

in o (i.e., a type of the form (A_ --+ A=, + A:_ _ -.. + 0)), since they can never appear as the head term of

a formula in an axiom anyway. Conversely, it does not seem to make sense to allow predicate, names and use

variables to have any type not ending in o.

5 Conclusions and Future Work

We have shown another fa(:et of the complex jewel of consistent higher-order logics, one close to that shown

173' Gihnore in his earlier work. Whether the logic of this paper turns out to be usefld remains to be seen, but

we believe that its existence should be interesting to the cominunity of researchers working with higher order

h)gic. Future work includes a proof of cut-elimination and more in-depth study of the nature of recursive

and higher order definitions in comparison to t)revious logics.
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Abstract. We present the design of a fi)rmal integrated design environnmnt. Ttle long-term goal of

this effort is to allow seanfless interaction between software i)ro(tuction tools and fi)rmal design an(l

analysis tools, especially between compilers and higher-order theorenl provers. The work in this rel)ort

is the initial design and architecture for integration of 1) the MetaPRL logical framework, 2) a multi-

language compiler we call Mojave, and 3) a generic extensible l)arser we (:all Phobos. The integrati(m

is currently Ilerformed at the hwel of the Mojave flmctional intermediate representation, allowing the

use of the theorem prover fi)r l)rogram analysis, transformation, and ()ptimization.

1 Introduction

_\k' are developing formal integrated design environments (FIDEs) where formal and informal tools are used

in a symbiotic relationship. That is, interactions between the formal and informal parts of the FIDE are

bidirectional and interdependent.

Most, if not all, existing formal design environments do not allow bidirectional intera(:tions, especially

between the theorem prover and the comt)iler. Yet, the system wouhl clearly benefit from closer interactioIL

For example, the compiler might be able to use the theorem t)rover for optimization, proof validation, or

program transformation. The theorem prover would benefit from the ability to formalize its own code,

especially tactics.

The larger need is for effective formal programming languages. By "effective" we mean that the languages

should be general enough and efficient enough to use in software production. By "formal" we mean that

programs can be both specified and verifed. The compiler is responsible for efficiency, the In'over for formality.

In order to achieve both properties simultaneously, we argue that the theorem prover and compiler nmst

interact closely (or, equivalently, one must be folded into the other).

In this paper, we describe our initial work integrating the MetaPRL logical framework with our Mojave
multi-language compiler. There are several parts that are needed for integration: 1) the compiler and theorem

prover nmst share a common language, 2) the compiler must allow for an extended program syntax that

includes specification, and 3) the compiler and prover must also agree on a common t)rogram semantics,

especially operational semantics. X_ present the following results:

- an architecture and implementation for the MetaPRL/Mojave formal design environment,

- a stmred typed intermediate language, with semantics defined in the MetaPRL iml)lementation of the

NuPRL type theory,

- an extensible front-end, called Phobos, that uses the MetaPRL rewriting system for extending and

defining programming languages,

- and exatnples of using the theorem prover for optimization.

Section 2 describes related work. Section 3 describes the MetaPRL, Mojave, and Phobos systems indi-

vidually, and Section 4 presents the combined architecture. We give example applications in Section 5, and

finish with a summary of flmlre work.

* This work was supported by the ONR, grant N00014-01-1-0765; DARPA, grant F33615-98-C3613: and AFOSR,

grant F49620-01-1-0361.
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2 Related Work

This work initially started with the developnwnt of lhe MetaPRL system [6 8]. MetaPt/L is a logi('al fiam('-

work, designed to allow re!lation.s between logics. MetaPRL is also designed as a "Logical Programming

Em'iromnent" (LPE) where programs, type systems, proofs, and specifications can all be defined and related

to olle allothei'.

One of the problems with the MetaPRL design is that it is a layered ar(qfitecture. The theorem prover

is layered above the OCaml compiler [16], and the conneclion is unidire('tional. Any task (such as parsing,

type in/i_rence, and seeping) that is assigned to the compiler is IIOt avaitabh, to the formal system, hindering

effective formal software (hwelopm(,nt.

In another related effort, we us_'d the NuPRL system to optimize commmfication protocols fl)r the En-

seml)le group (xmmmni(:ation system [12, 11]. Again, this project separated the t)rover from the compih,r.

To optimize a proto(x_l, a parser would convert the protocol and requirements into an expression in the

NuPF/L tyl)e theory; the l)r()ver would apply optimization tactics to generate a "fast-path:" and the result

wouht be printed as a ML file to be ('ompiled by the OCaml (:ompiler. While successflfi, this was awkward.

Furthermore. optimization strategies were defined in NuPRL, not as part of the program code, making it

difficult to synchronize the formal system with new Ensemble code releases. The architecture we propose in

this paper is an effort to design a system where formal properties are "first-('lass" program properties, and

the prorer/compJler interaction is seamless.

In other related areas. Sannella and Tarlecki's Extended ML [9.10] allows mixing of program implemen-

tatk)n and formal specification for SML programs. The ACL2 system [3] allows extensive mixing of formal

specification an(t Coimnon Lisp programs. Nearly all other formal systems, including systeIns like HOL [5],

PVS [41 and Isabelle [141, allow extensive reasoning about programs, but the prover is not coupled with a

compiler as we are prot)osing in lhis paper.

3 Architectural Components

There are three major parts to our architecture. The MetaPRL system provides reasoning, the M<)jave

system provides compilation, and the Phobos system providers generic, extensible parsing. The overall system

architecture is shown in Figure 1.

I I

..sea, I:] Java II I Phobos ,

', I I /, (%--

/,,
FuncfionalJ - - j-" I/I '

,,',/ / MetaPRLI
',

;
Machine code MotaPRL

Mojave

Fig. 1. System architecture: Path (i) corresponds to a traditional compilation t)ath augmented by the theorem prover.

Path (ii) uses the dynamically extensible front end.
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Fig. 2. MctaPRL system architecture

3.1 The MetaPRL system

MetaPRL is a logical fi'amework, designed along the same architectural principles as the NuPRL system.
The system architecture is shown in Figure 2. The refiner contains three parts: 1) a term module, which

defines the system syntax, 2) a logic engine, for theorem proving, and 3) a bookeeping moduh" to manage
and validate proofs, and perform program extraction for constructive proofs.

The meta-language defines the language of tactics and conversionals (rewriting tactics), whi(:h are used

to define decision procedures and proof heuristics. The entire MetaPRL system is written in OCaml, and
OCaml is used as the language for tactics and conversionals.

The topmost layer in MetaPRL is the definition of theories and logics. A theory is defined by 1) its

syntax (defined using terms), 2) its proof and rewriting rules, 3) its tactics and conversionals, 4) its theorems.

expressed as derived inference and rewriting rules, and 5) other utilities for display and pretty-t)rinting.

Judgments Inference rules are often, though not always, described in a sequent logic. For exami)le, the

following inference rule would describe the implies introduction rule in a prot)ositional logic.

rule imp_intro H :

[main] (H, v: ,4 _- B) ---+

[wf] ( H F-A type)
HF.4_B

In this rule, the variables A, B, are meta-variables that represent arbitrary terms and H ret)resents a

context. The sequents labeled "main" and "wf" are the premises of the rule; "main" is the main premise,
and "wf" is a well-forme(tness requirement. The -----4operator is the meta-imt)lication that MetaPRL uses to

represent inference rules. The declaration of the imp_intro rule defines a tactic, called imp_intro that can

be used to "refine" any goal of the form H _- A =v B into two subgoals. From here, it is straightforward, for

example, to define a derived rule (a theorem) that would apply to sequents of the form H F- .4 =* B _ C.

The proof would use the imp intro rule twice, and there would be four premises.

Rewriting judgments are defined in a similar way. The rule for beta-reduction in the untyt)ed lambda
calculus woul(t t)e expressed using the following rule.

rewrite beta: apply{lambda{v.el [v]}; e2} _ el [e.)]

This declaration defines a conversion called beta that can be applied within a proof to any redex,

performing the substitution. Note that the statement of the rewrite uses second-order substitution [1, 13].

The pattern e_ [v] represents a term in which the variable v is allowed to be free, and the term e_ [e.2] represents
el with e.2 substituted fi)r v.
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Syntax, and terms All logical t(,tms, inclu(ting goals and subgoals, are expressed ill Ill(' langmlge of terms.

The general syntax of all terms has three parts. Each ternl has 1) an el)crater-nauru (like "'sunl"), which is

a unique name indicating the logic and (:Oml)onent of a tel'nl_ 2) a list of l)arameters representing constant

values; and 3) a list of subterms with possible variabh, bindings. We use the followhlg syntax to describe

terms, based on the NuPRL definition [2]:

ov,,..,_ [p,;" :v,,]{,,,#,:-;vm.e,,,)

ol,e:ra{o_' tzars( l)itrarn_;Icrs sIiI_l_ rl)),_

A fl,w examl)les are shown at the right. Variables are terms

with a string parameter for their nante; numbers have an integer

l)arameter. The lambda term contains a binding occurrence: the

variable .r is bound in tlt(, subterm b.

3.2 The Mojave compiler

Dist)layed fl)rm Term

1

A:r.b

f(_,)
| !

.r + iq

number [1] { }

lambda[] {x. b}

apply[]{f; a}

variable ["V"] { }

sumE]{_;y}

The Mojave nmlti-language compiler, shown in the left half of Figure 1. is made up of three major parts.

The fl'ont-ends are responsible for compiling (:()de to the flmctional intermediate rel)resentation (FIR), and

the back-end is responsible for generating machine (:ode from FIR. FIR type inDrence and optinfizations

form the middle stage of the c(mq)iler. The FIR is the primary concern for this paper: it is tit(' language we

are using for interaction with MetaPRL.

Functional Intermediate Representation The FIR is designed to be a minimal, but general-tmrt)ose

typed intermediate language. The FIR has higher-order funetions, t)olymort)hism, and object tyl)es, We will

describe it in two parts, first the type system, and then the programs.

The FIR type system The FIR type system is based on the polymorI)hic lambda calculus. The tyt)e system

is shown in Figure 3. There arv the normal scalars, including native integers with various bit precisions

(Z_ .... ,Z6.,) as well as "boxe(t" integers, enumerations {0...i} whose values range from 0 to i- 1, and

floating-t)oint numbers. Enumerations are used to code several base types: the empty type Void is {0... 0},

Unit is {0... 1}, etc.

Functions has,e multil)le arguments. The type (t;,..., t,,) --4 t is the space of flm(:tions taking arguments

with types tl, •.., t,, an(l returning a value of tyt)e t.

Tuples (tt,..., t,) are collections of elements having potentially different type. The t array tel)resents

variable-sized arrays of elements all having type t. The data type is used specifically for C: it represents a

variable-sized data area containing elements of any type. Values of data type are not statically type-checked:

it is not a type error to store an integer in a data area, and immediately fetch a value from the same location

with some other type, but the runtime will raise an exception if the operation is unsafe.

Types are always (tefined reb_tive to a context F that contains tyt)e definitions and scope information for

polymorphic variables. The uni(m type AoI,..., <b,.tl +'" +tm is a polymorpbic disjoint union of tuples

_1 ..... t_. A vahm with a disjoint union type is a tagged tuple of type ti with tag i for some i E {1,..., n}.

If _: defines a union type .lal ..... o,.tl +... + t,_, then the (:onstructor type eonst(v[il, ¢*1..... a,, ) denotes

a tagged tuple of type ti[al .... , an].

Polymorphism is expressed using the existential attd universal types. A value of tyi)e _a.t has type t for

some type t_, and a value of type Vr_.t has type t for all types (t.

An object type Objeet(v.t) is a recursive type definition denoting objects with description t.

FIR expressions The FIR expressions are in a mostly-flmctional intermediate form where the order of

evaluation is expli(:it. At, ores ar(' values that are either constants or variables, and the other expressions are

computed over the atoms. Function definitions are stored in an (mvironmenl _ that also serves as a type

assignment. The definitions are shown in Figure 4.

Expressions include explicit coereions and arithmetic as unary and binary ot)erators.



16 BrianAydmnirel al.

d -:=

Type Descrit)tion

boxed(Z)

10,.. i}
Z_, ZI_, Za2, Z_4
float

(tl,...,t,) _ t

const(v[i], tl ..... t,,)

(t,,...,t,_)
I array
data

Boxed Integ(,rs

Integer enmnerations

Native integers

Floating-point numbers

Function tyt)e

Constructor type

Tuple tyt)e

Array tyl)e
Unsafe data

I!

I![_l .... ,_1]

3o:.t

V(_.t

LL

Object (v.t)

,lCtl,...,(tn.tl +'''-{'-tm

Polymori)hi(' type variables

Type varial)les

Type application

Existential types

Universal typos

Abstract tyt)(,

Object typ(!

Type abstraction

Type contexts

Fig. 3. The FIR type system

The "ext" call represents a call to the runtime, providing a method to issue system calls. Type definitions

for system calls are provided as part of the compiler configuration, to ensure type safety. The tailcall I)rovides

the only other means for calling a function.

The "nmtch" construction allows pattern matching against a constant set of mnnhers, represented as a

list of'intervals. Each match case defines a set s and an expression e. Ot)erationally , the pattern match selects

the first case (si, el) such that a C si, and evaluates the expression el. An inexhaustive match is a type error.

The "alloc" operation is used for alh)cation of tul)les, constructors, arrays, or data arrays.

The array operations define primitives to load and store values in arrays. The store, operation is the only

non-functional prinfitive in the language.

The "assert" statement asserts that a predicate nmst be true. The runtime uses these predicates to

validate array bounds, and other runtime properties.

3.3 Phobos

The Phobos parser provides dynamic and extensible parsing. Languages can be augmented with new syntax

and semantics, and added to the system runtime dynamically,.

The central issue in an extensible t)arse, r is the representation of semantic actions--the programs that

describe, for each clause in the grammar, how to form the abstract syntax tree. Our approach is t.o represent

all intermediate forms as terms, and to use the MetaPRL term rewriter to define semantic actions.

For example, Figure 5 shows the language description of simple arithmetic expressions including factorials.

The entire description is represented as a language module, which can be incrementally refined and extended

in inheriting modules. Based on this language module, Phobos can lex and parse a sour(:e string and return

a MetaPRL term that encodes its semantic meaning.

A Phobos language module consists of

- Term declarations: importing terms from existing MetaPRL modules. In the above examt)le, the arith-

metic meta operations are imported from Base_recta, a standard MetaPRL module that defines basic
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::= 0"1,... , O'r, Varial)le environment

Fig. 4. FIR expressions
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operations on numbers and simple conversions for their simplification. Term declarations serve the pur-

pose of verification and protler scoping within MetaPlqL modules. Terms do not have to be declared if

they are explicitly named with their parent module, for example Itt_int base !number.

- Lezical information: terminal symbols are named and defined by their corresponding regular expressions.

Upon successfiflly matching a regular expression, the resulting loken is represented as __token_ [p : s] (' pos},

where p stores the matched string, and 'pos its source position. This term can be given further meaning

by an optional lexical rewrite. In the example, numbers are rewritten to MetaPRL nmnt)er terms.

- Precedence rules: used to define precedence and associativity of terminal symbols and production rules.

- Grammar: Expressed in BNF, each production may contain a list of rewrites that define the corresponding

semantic action. If more than one rewrite is given, the first matching rewrite is carried ()tit during parsing.

If no rewrite is given, a default rewrite is used that tmilds a tuple term from the right-hand side.

- Post-par'sing rewrites: Possibly multiple sections of rewrites that are executed in sequential order after

parsing. In the above example, the two rewrites are responsible for replacing a fact term with its actual

value I)y unfolding factorials into nmltiplications. At the time of applying these rewrites, the MetaPRL

refiner contains several "built-in" conversions that, for exalntile, reduce the meta arithnmti(' terms.

Optimizations: Optional target l)atterns for optimizations.
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Module Calculator

Terms -extend "Base_meta" {

declare meta_sum{'el; 'e2}, meta_diff{'el;

declare meta_prod{'el; 'e2}, meta_quot{'el;

}

'e2}

'e2}

Terms -extend "©" {

declare fact{'e}

}

Tokens -longest {

NUM = " [I-9] [0-9] *"

TIMES = "*"

DIV = "/"

PLUS = "+"

MINUS = '....

{ __token__[p:s]{'pos} -> Itt_int_base!number[p:n] }

{}

{}

{}

{}

LPAREN = "("

RPAKEN = ") "

BANG = " ' "

{}

{}

{}

* EOL = "\\n"

* SPACE = " "

{}

{}

_left PLUS MINUS

Xleft TIMES DIV

_left LPAREN RPAREN

_left BANG

Gran_nar -start e {

e ::= NUM

e PLUS e

e MINUS e

e TIMES e

e DIVe

e BANG

LPAKEN e RPAREN

{}

{ 'el PLUS 'e2

{ 'el MINUS 'e2

{ 'el TIMES 'e2

{ 'el DIV 'e2

{ 'e BANG

-> meta_sum{'el; 'e2} }

-> meta_diff{'el; 'e2} }

-> meta_prod{'el; 'e2} }

-> meta_quot{'el; 'e2} }

-> fact{'e} }

{ LPAREN 'e RPAREN -> 'e }

Rewrites {

fact{l} -> 1

fact{'number} -> meta_prod{'number; fact{meta_diff{'number;

}
I}}}

Fig. 5. A grammar for simple arittnnetic with factorials.
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Giv('n our language module, 1+2+3+4 ! yields Itt_int_base !number [30:n], a MetaPl_L nmnl_er term

representing the number 30.

4 System Architecture

There are several technical issues in integrating these systems. The first issue is defining a shared language

for MetaPRL and Me jay(, (Pbobos and MetaPRL already share a common language of terms). Next, in order

for MetaPRL to reason about Mojave i)rograms, we have to forumlize the languag(,, in(:htding its Ol)erational
senlantics.

4.1 FIR as a common language

W(, are using the FIR as th(, (X)tlllll()n MetaPRL/Mojave language, fl)r s(,veral reasons. First. all the front-

en(ls, including C, ML, and .lava produce programs in FIR; if we ('an reason about the FIR. w(, can r(,ason

about programs t)roduced by any of lhese languages. Second, the FIR has a precise semantics, where many

of th(, source languages (to not (ti,r examl)le , C).

However, the disadvantage of using the FIR is that it is ditticult in general to translate source-level

specifications and proofs to their corresponding specifications and l)roofs at the FIR level. The optimization

problem is not nearly so hard, and much of our current work has been developing operational reasoning in

MetaPRL at)out programs in the FIR.

The Mojave compiler does not use terms for its internal representation of programs. For eonununi('ation

with MetaPRL we develop "gluV' code to translate between the Mojave FIR representation of a progi'attL

and the MetaPRL term ret)resentation of the program. This glue code is straightforward; for the remainder

of the paper, we will assmne l)ro/rams are represented as terms.

4.2 FIR term representation

The MetaPRL term representati(m fl)r FIR progrants is straightforwar(t. In most cases, the t(,rm that repre-

sents an FIR expression has an explicit operator name (el)name), and a set of sul)terms described recursively.

We illustrate the translation wi_h a few examples, using the notation _-_ for tit(, term representation of a
FIR program.

The atom values tagged with a name. and any additional parameters.

b'_ = atomVar{v}

[i] = atornlnt{i}

[;:_2,*,un,_d] = atomRawlnt{int32; signedlnt; i}

Expressions are a bit more interesting because of their binding structure. The term representation of an

expression, in contrast to the ML representation, uses explicit binding in the form of higher-order abstract
syntax [15]. As Pfenning menti(,ns, the advantage of higher-order abstract syntax is that substitution and

alpha-renaming are automatic. "The disadvantage is that analyses that modify the binding in unusual ways

become difficult to define. "_,i_ illustrate the term syntax with the term for binary arithmetic.

_let v: t = ,, binop a.e in el = letBinop{_*_; [ binotd: ia, l ; [a._,]; v.[c]_}

The remaining terms follow 1he same general form, and we omit them here.

4.3 Operational semantics

The operational semantics of the FIR is defined using rewriting rules in MetaPRL. The actual operational

definition is quite large because there are many coml)inations of arithmetic operations and values. However.

the forms of definition are straightfi)rward. For examt)le, the operational rule for addition has the following

general form, which we write using simplified pretty-printed notation. To be faithful to the imt)lementation,

we are using mo(hflar arithmetic.
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(let v: t ----atomlnt{i} + atomlnt{j} in @,]) --+ t_[i + j]

The control operator match has a more interesling definition. The match operalor is a I)atr¢'rn match of

a number i against a set of intervals. The number of interval cases is arbitrary, and reduction performs one
case analysis at a time.

(match iwiths _ el cases)

--_ (if i C s then e else match i with cases)

Tit(' interval .s is rei)resented as a list of closed intervals [i_.i_.,j,..., [i,,_,i,,,], and the menfl)ership
oI)eration is defined inductively.

(i E ([j, k] :: interval)) _ (i <_j A i <_ k) V (i E interval)
(i • [1) _ false

Once again, the renlaintter of the operational senmntics is straightforward, and we do nol present it here.

4.4 Models and usage

The question of models is probably the most interesting topic in this translation. Ideally, we woul(t deveh)p
a model of the FIR in a type theory or other higher-order logic, and then prove the operational semantics

and typing rules. Note that a complete model would need to represent both partial flmetions and general
recursive types. We have not developed this me(tel, and we presume that it is likely that we will need to
restrict validation to a fragment of the calculus that has a well-defined forinal model. In the meantime, we

treat the operational semantics axiomatically.

As Figure 1 illustrates, there are currently two major ways that we use the MetaPl:(L/Mojave system. The

(i) path uses the Mojave fi-ont-ends to generate FIR code, which is then passed to MetaPRL for optimization.

The (ii) path produces FIR from a Phobos descrit)tion , optimizes it, and passes it to the compiler for code
generation.

5 Examples

We illustrate the system with two optimizations. The MetaPRL/Mojave systems, including examples, can
be downloaded fl'om http://www .metaprl. org and http ://mojave. cs. caltech, edu.

5.1 Dead-code elimination

Some standard code transformations are incredibly easy to define using term rewriting. Dead-code elimination

is one of the simplest. The idea of dead-code elimination is to remove any ('ode that does not affect the result

of a computation. The problem is not computable in general, although we can develop proof procedures to

catch a fairly broad set. Tile usual approximation is to use a syntactic characterization: the sub-expression c l

in let v: t = el in e2 is dead ifv is not free in e2. Second-order term rewriting makes this easy to characterize.
The following rewrites call be derived as theorems in MetaPRL:

(letv: t = unopaine) --+e

(let v: t = al binop a2 in e) -+ _

(let _,,= alloe in e) _ e

(letv: t = a,[a2] in e) _ e

Dead-code elimination is then performed by normalizing the program with respect to these rewrites.

Note that the expression e in the redex does not mention the variable v, which means that v is not allowed

to appear free ill c (the second-order pattern ely] would have allowed v to appear irl e, and would not
be provable [13]). Also, note that the first-order definition using substitution would not be as useflfl for

dead-code elindnation t)ecause the rule does not specify explicitly that the variable v is dead.
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(let v: t = unop a in e) --+ r[r,/_,]

There are two main differences between this h)rmal dead code elimination (using path (ii) in Figure 1),

and the standard dead-code elimination (using path (i)). First. lhe formal definition is much smaller the

Mojave dead-code elimination phase is some 700 lines of OCaml code. Second, the OCaml ilnplementation

is also much more general, because it makes use of global program properties. For example, the OCaml

implementation t)erforms dead-argument elimination, where a funclion t)arameter can be eliminated if it is

never used. This requires modification of all calls to the fllnction through the program, a global operation

that is difficult to perform using term rewriting.

5.2 Partial evaluation

The next example illustrates a siml)le, but non-trivial, application of partial evaluation. Consider the following

FIR code (we oinit the types for clarity). The power flmction conq)utes the value res • :r ._, and passes it to

the continuation coz_t. The power5 flmction comlmtes the specific case where res = 1 and y = 5.

let power (res. x, y, cont) =

if y = 0 then

cont (res)

else

let res' = res * x in

let y'= y- 1 in

power(res', x, y', cont)

let power5 (x, cont) =

power(l, x, 5. cont)

inline power(res, x, number[i], cont)

For this examph,, we w_mld like to "unroll" the definition of power5 to a sequence of 4 multiplications

:r • x * x * a- • :r. The programming language, defined in Phobos. includes the inline extension when, the

programmer can indicate pat.terns that shou]d be expanded using the inline keyword. For the example above,

the inline instruction specifics that a call to the power function should be expanded when its third argument

is a number.

Based on this information, the MetaPRL system constructs a rewrite to force the unfolding.

let power (res, x, number[i], cont) ---+

if numt)er[i] = 0 then

cont(res)

else

let res _ = res * x in

let y' = number[i] - 1 in

power(res', x, y', eont)

Next, power5 is normalized relative to the rewrite, and all calls to the power flmetion with a constant

exponent are inlined. The final definition of the power5 function is as follows.

let t)ower5(x, cont) =

let xl = x * x in

let x2 = xl * x in

let x3 = x2*xin

let x4 = x3* xin

cont (x4)
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Theot)timizedcodeI)roduc(_dbyMetaPRLisstill suboptimal;if weassmne1halmultil)licationisassocia-
tive,theilltlill)eFof multiplicationscanbereducedto three.Wehavenotimph_mentedpartialevahmtiollas
a compiler l)has(, in path (i). Partial evaluation is most natm'ally exl)ressed using the operational selllalltics

of tim i)rogram: any iml)lementation would needlessly reimplement program evaluation.

6 Conclusion and Future Work

The work presented in this t)aper demonstrates the principle of formal integrated design environments. I)ut

the integration is far fl'om comt)lete. Ainong tim next stet)s are: 1) a complete tbrmalization of the operational

semantics and type system tbr the FIR, 2) a more general framework for performing l)artial evaluation. The

Mojave comt)iler archit(_cture has many (around 30) stages of program transformation and ot)timizalion. It

seems likely that many of these transformations (:an be significantly simI)lified t)y imt)lementing them in the

theorem I)rover. Another important direction is "bootstrapping." Currently, MetaPI/L is still lay(,red over

the ()Carol eomt)iler because the Mojave imt)lementation of ,NIL does not in(:lude a moduh, system. Removal

of this obstacl(, would ena})l(' ('omplete integration of the formal design enviromnent.
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Abstract. This (h)('um(,nt ,Ir_s(:rit)es part of an (,ffort to achiev(_ in Nut)rl a practical refit,ellen of

its exl)r(,ssi()n syntax. This l('flt,(:tion is don(, at the granularity of th(' Ol)(,rators: in t,arti('ular, each

operator of the syntax is denoted by anoth('r ¢)perator of th(' same swmtx. Furtht,r. the syntax has

binding operators, and w(' (,rganizc r(,fl('ction not around the c(mcret(, })in(ling syntax, but instead.

around th(' abstract high(_'r-_)r(h_r syntax. \V(' fl)rmulate and prov(' th(' ('orr('ctlmSS of a (:ore ruh, for

intbrring w('ll-formedn(,ss of instanc(,s of op(,rator-d('noting operators.

1 Introduction

This work is part of an ov(,rall effort to g(_t a t)ractical refle(:tion of svntax computation an(t i)r()of in

Nuprl [4, l, 31. Reflecting syntax in a h)gical system entails writing t)roof rules that ext)ress that refle(:tion.

i.e, (,stablishing an inferential conn(_etion between th(_ actual syntax used and the meta-t('rms supposedly

referring to it.

Operator-denoting operators are called shifl, ed el)craters: if an operator x denotes operator y, then :r is

called a shifted y, and will be typeset as _d- For example, a+____bdenotes c + d if a denotes e and b denotes d.

The t)lus operator denotes a function that takes two integers and returns an integer, and its shifted version

denotes a function that takes tw_ terms and returns a term. The problem is what do we do with an operator

that has a bound subterm: for exantple, Vx. P(x) is an operator that denotes a functi(m taking a I/oolean or

propositional fimction and returning a boolean or a proposition (its syntactic form is. of course, binding).

The obvious choice for the s(,mantics of the shifted version would t)e a function, V_(x, P) that takes two

expressions as inI)ut values: one for the hound name, and one for the body, and constructs the ('onerete V

term. \Ve will not pursue this direction. Instead, we shall adopt a higher-order abstract syntax [7]. Going ill

this direction, we get the usual t,(_nefits of this approach over concrete syntax (or alternatives like (h,-Bruijn

indexes), such as specified in [8]. But we get a further bonus: it allows us to retain tile sam(, binding structure

as the operator being denoted. In t)articular, the single input argument for V_has the same binding as V: it

takes in a term-valued fimction as an argument.

hnplementing reflection in a programming language is usually done in a straightforward way: simply

expose the implementation's evaluation function so it is available to programs written in the language.

However, in a logical setting this is usually not the chosen apt)roach, and the result is usually limited in

its usability to theoretical ()r toy examples. Tile t)est exampl(_ is GSdel numbers [5] which are good as a

theoretical tool but not fit for an actual running system. Our goal is an (,ventual implementation that folh)ws

the same prin(:iple of exposing internal functionality: this is the outcome of operators being denoted by

operators. The result is (;xt)(,cted to be a syst(_m that has practical reflection implemented as is the situation

in t)rogramming languages.

This construction is intended for the Nuprl system, but we avoid relying on a specific substitution function.

which mak_,s this approach applicable in the general case. Relevant information about Nupr] terms is limited]

to their (:ontent: a Nuprl term contains an operator id, and a list of bound subterms, each containing a list of

bound variables and a term. Throughout this text we use a more conventional notation, with the extension

of using underlines for shifted operators.

Returning to the question above: we begin t)y asking what is the semantics of _V? Tim semantics of a

concrete shifted V is the trivial one given above, but the seInantics for V is more subtle.

2 Semantics of Shifted Operators

Since V_ is a binding operator, it. takes a function as an argument. Our t)asic requirement is that F(t) be the

result of the 'All-Instantiation' rule at)plied to _x. F(.r) and t. This means that F needs to t,e a substitution



24 Eli Barzilay and Stuart :Xlh'n

fwnction. So the selnanti('s we adopt for _Vx. F(x) is that it denotes the V fin'mula whose predicate part is

F(,) and whose binder is u for some u almost.

But which u? As usual we can avoid this question by using a higher-order abstract syntax and say that

what is denoted is actually the (_-equivalence class of all such fornmlas where some appropriate, could be

found. From this t)oint forth, we use 'Term' to refi,r to these n-e(tuivalen('e classes rather than the concrete

terlns.

Befln'o going to the technical parts, lets consider how we might reason about this in tim i'efl(,(:tive logic.

The first intuition is that proving that sonmthing is a Term depends only on having a (lUOte([ ol)erat()r o__

and on its subl)arts in a simple compositional way:

k o___(_=T.th;_.b2;... ;_.b.) 6 Term

if" _ : Term I- bl E Term

v._-: Term I- b.2 E Term

_'r_ : Term I- b. E Term

This seems fine, l)ut it. fails with bound variat)les. For example, the following can t)e proved:

t- A__(x._if x = (_)then 1 else 2) E Term

because x:Terml-if x = 0 then _l else _2E Term

The premise line is trivial, but the original statement is false, because the quoted _A-term contains a function

which is not a substitution function it is not a "tenq)lat(¢' function, hi other wor(ts, there is no literally

quoted term that this value stands for.

When inspecting this term, we ('an compare it to similar but valid terms to see what went wrong with
this rule:

1. A(x. i_.f_fx = 0 then 1 else 2)

2. A_x._if :r = 0 then _1 else 1_

3. Ax. if x = (_2)then 1 else _2

The two __A-terms are fine, because they're built fi'om substitution functions, and the last one is a simple

Term --+ Term function. The difference between these terms and the t)revious ()tie indicates what is wrong

with the above rule: the bound variable should not be use(t as a value. It is a binding that should only t)e

used in temt)late holes, as there is no real value that this variable is (wer bound to that can t)e used. hi tit('

valid examples, the first one did not use the bound value except for sticking it in its place. The second one

almost use(t the value, but since the two branches are identical it is possible to avoid evaluating the test

term: therefore it can be evaluated without using it., and the last one is not a Term but a function on Terms,

so it can use that value as usual.

The conclusion is that a bound variable can be used only as an argunlent of a quoted term constructor.

In other words, it can serve only as a value that is "computationally inert", much like universe expressions

in [2]. This is also similar to variables that are bound by Scheme's syntax rules [6] they are template

variables that can be used in syntactic structures to build new structures 1. When put in this light, it seems

that any attempt to get this prot)erty in a proof fails. The lesson from this is: variables hotrod by quoted

operators do not behave like normal t)indings in the sense that they do not provide any values usable on the

norlnal Nuprl level and this is also true regarding universe expressions.

3 Term Definition

V,_ take CTerms as concrete terms: the tyt)e of objects intended to be ordinary syntax objects with binding

operators. A more t)recise definition is given later, in Section 5. To define the Term type, we also need to

t For example, in the template ((foo x) (bar x)), the identifier 'x' is just a place holder that can be used to stick

a value in a template; it. is not possible to inspect its value.
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introduce a luedicate, is_subs<, which is used to distinguish proper sul)stitutiem functions. This predicate

is defined ill Section 6. and iI has specific rules which are introduced in Section 6.1.

,ks said above, Terms are defined over these CTerms:

Term - CTerm//a

Terms are constructed by shifted operators, which have tile semantics of time<ions that create Terms from

Term substitution functions. For example:

g__: {f : Term _ Term I is_subs<ill) } --+ Term

using a versitm of is_subs< that works with one argument flmctions. Generally. is_subst, is a t}redicate

over Term"--+Term. To simtllify things, we drop tile n when the context is clear.

CVar is a subsets of CTerm, which co]ltains ollly atolnic variahle terms. Correspondingly, Var = {{x} I

_: E CVar}, dlerefore Vat C Term, sinr:e variables are (_-equivalent only to themselves. Two assumptions that

will be used in tilt, h}llowing are 1hat we have an infinite supply of distinct variables in CVar (and therefore

in Var) and that there is at least one closed CTerm we can use.

4 Operations, Assumptions, and Facts

These are the operations that wi[l be needed in the following text:

•[ taking tile (>e<tuivalence <:lass of an object.

•[ choosing an element of an <_-e<tuivalence <:lass. This is sonic fuiwtion, su<-h as <me that chooses the

frst available variable names using lexicographic order.

-[./.] standard capture-avoiding substitution <m CTerms. It can be use<t t<> subslitute for nmhit>le variables

at <>tie shot, provi<ted that the number of supplied terms matches the number of variables, which are

all distinct.

"1/'1 substitution for Terms, which is defined using the above operations as: blY/T _ = bL[_l/g[][.
newcvar(-) returns a new CVar, i.e., newcvar(t) is neither flee nor bound in t ff CTerm.

newvar(.) is similar to new<war(-) but for Terms, defined as: newvar(x) = newcvar(xL)[.

newcvarn(-) returns n new CVars. defined as:

newcvarl (.r) = newcvar(.r),

newcvar,_+l (x) = (let v :: newcvar,,(x) in v, newcvar(v, x)).

newvar,_ (.) returns n new Vars, _tefined in the same way as newcvar,_ (. ).

We use versions of these operations that are generalized to any lists and tuples of input arguments in

an obvious way. The newcvar(-) and newvar(.) operations are fllrther extended to time<ions by plugging in

some closed dumlny term argument (that we naIne '0') and using the result:

V f: Term"-+Term. newvar,,_(f) = newvarm(f(0"))

Below we will often justify things of the form at= bL by mentioning lemmas of the form a =_ b. without

emphasizing this transition.

Note: all overline in<licates the value is a tuple an<t a way to in<h,x its elements. For examllle , _ : Var n

nmans that _- is a list of r_ Vars, and that xi is the ith element of this list; that is, x is a function from

i : 1...len(_) to the ith element of _.

4.1 Important Assumptions and Facts

In this section we state several assumptions and derived facts about substitution tile assumptions are

not argued for, but we think that it is clear they, are all true for any reasonal>le definition of substitution

(one that respects the usual term binding structure). This allows us to take substitution as given and avoi<t

getting into a specific implementation. These will be used in the following text.
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"1 Vx : Term..r = :r[[

*2 W": CTerm. x =_ :r[L

This fact is mostly used when nested in a bigger term, see *4 below.

*3 Vx : CVar..r = .rrL

because x G CVar _ a'[[= {.r}_= x.

,4 VYT. _: CTerm', F: CVar', b : CTerm. _ =,, _ _ b[:Tf/V] =,, b[_/V]

Note that using this fact, *2 can be used in a subterm of an <_-equalitv, since: Vt, z : CTerm. t =,_ t[.r[l/.r]
*5 Vb:, 1,2 : CTerm, t: CTerm", F: CVar". b, =,, t,2 _ b, [t/F] =a b217/F]

note that F is the same on both sides (free varial)les in the body are not changed).
*6 Vt : CTerm, _ : CTerm"', _ : CTerm ''2, v:, u : CVar":, _ : CVar"-'.

the sequence v_, v2 are distinct & _ are distinct, not free in t.

This is simtfle to verify:

tF, _/_, _1 [_/:]

Note that it is easy to show that such a _/exists by choosing it as:
let 7/= newcvar,_ (t, _-g_,...)

*7 Vt : Term, _ : Term"', _ : Term ''2, _,g : Var':, _: Var "_.

the sequence th,v., are distinct & g are distinct, not free in t,

Again, verifying this is simple: from *6 we know that

tL[:L,_L/_L, _t] [_L/_L] [-- tL[_t,_L/_L, _t]r,
SO:

tFz, Z/t-V, _ [[_/id = tL[:L,_L/WL, _k] FL[_L/:L]V

it,:. ,._ ,,._ or .6 .bov,,) = t[[_[, _L/W[, _L]I

.4. similar note holds here: it is easy to show that such a E exists if it is chosen as:

let _ = newcvarn: (t[, Y-]L,...[)[= newvar_, (t, _,...)
*8 Vc : CTerm, v,u : CVar n, _,t : CTerm _.

: are not free in ,: except for _ _ _[:/:][_/:] =,, _[:[i/_]/:]
Note that the F exception is usually not needed.

*9 Vc : Term, v, u : Vat n, ::,l : Term _.

'_ are not free in c except for F _ c[:q/FHt/_i ] = c[_[t/_]/F_

This is easily shown by *2 and the definition of .[./.], using the previous fact.

A general intuition that arises from these facts and others, is that Term values are indeed isomorphic to

CTerms: as long as there are no "dirty" concrete tricks played by usin9 names of bound variables, facts that
hold for CTerms will have corresponding versions for Terms.

5 Definitions of Shifted Operators

In the general case, a shifted operator id, oN_d_, is defined as a flmction that takes in some substitution

functions (determined by ±s_subst) of some arities, and returns a Term value. This is done in the otwious

way: each of the substitution fimctions is used to plug in new variables; then the results, with the chosen

variables, are all packaged into a CTerm; and finally, the o-equivalence class of this result produces the

resulting Term. The actual representation is not too important - we could go with pairs and lists. For

example:

A(f) = ('A', [([newvar (f)t], f(newvar(f))D]) I
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but this gets too c(mq)lex in the general (:as(" (and it makes analysis hard. since we should know if a pair

stands for a bound term, a term. or a pair of terms).

Instead, we use some tyt)t,s and abstract operations, which avoids committing us to sore(` r(`pres(,ntation.

The additional t vpes we need are:

- 0pld will be us(,d for term re)m(` labels;

- BndCTerm_ is a bound C-Form (where a : N) packagin_ a CTerm with tz distinct CVars.

BndCTerms are created with a mkBndCTerm constructor":

mkBndCTerm E a:N--+ (1...a_ CVar)_ CTerm_ BndCTerm,

An ah(u'tmt(, syntax for mkBndCTerm can I)e more natural when o is known:

mkBndCTerm(2, t)

CTerms are created with mkCTerm:

mkCTerm

stands h)r mkBndCTerm(l(`n(_). (Ai. xi), t)

E Opld --_ r_ : 1N

(i : 1...n _ BndCTermo_)

CTerm

An ah(`rnat(` syntax for this which can be more natural when n, a are known is:

mkCTerm(o, [mkBndCTerm(_l, tt ) ..... mkBndCTerm(_£, t, )])

which can be used instead of

mkCTerm(o, _,, (Ai. l(`n(_)), (/_i. mkBnaCTerm(_,ti)))

Til(, next thing we need is a type which is the sul)set of Term"--+Term flmctions that are substitution

fimctions (using the is_subst predicate):

SubstFunc, = {f : Term'-4Term I is_subst,(f)}

Now we have reached the point where we can finally define a mkTerm constructor for Terms which uses

mkCTerm:

mkTerm 6

This flmctionisdefined as:

mkTerm(o_n,o,f) =

Opld -_ n : N

--+a: (1 ...r_ --_ N)

--+ (i: 1...n _ SubstFunc.,)

-+ Term

mkCTerm(o, n. a, Ai. let .T = newvaro, (L) in mkBndCTerm(P[, fs (_) [))[

an(] the a]t(,rnato syntax for this is:

mkTerm(o, [(al, fl) ..... ((_,,, f,,)])

which stands for

mkTerm(o, n, Ai. ai, Ai. fi) = mkTerm(o, n, o, f)

2 We use the notation x : .4 -_ I_ to denote flmctions on A such that Vx : .4. /(.r) 6 B_, a type which is more

conventionally denoted by Fix : A. B._.
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A shifted operator is a Term constructor which uses mkTerm with some fixed operator ham(, and arity

list. For exmnple. '_A' and 'r' are defined as:

A_(f) = mkTerm('A'. [(1, f)]). _v(f,.q) = mkTerm('_', [(0, f), (1,9)])

Note that since mkTerm is curried, a shifted operator is made t)3" specifying the first three inputs: mkTerm(o, v_. _).

In addition to the assumptions and facts introduced in Section 4.1. we further assume the following:

*10 We specify one way that substitution interacts with CTerms for all i, k, if it is true that

if t,,. is fl'ee in l, then none of _ are free in either rt. or _'t.

t,II(_n 3 ,

mkCTerm(o, n,a, At. mkBndCTerm(Ti, t i))[T/U] =_ mkCTerm(o, ,_, a, At. mkBndCTerra(5_, t i [F/F]))

To see why it is true using any reasonable definition of substitution, it is simpler to first see that a

precondition that couht be used is that none of _ occur free in r, ,,; this is too restrictive for our future

needs but the explanation is somewhat similar.

First of all, if _,,. is not free in ti, then there is no need for any restriction, since it does not have any

effect on t ho r0sult. Now, if it does appear in li, then it is enough to have two guarantees for the above

to remain an (_-equality: (a) if none of _ are free in rt. then capture by _ is imt)ossible: (b) if t,,. is not

in x_, then none of tho t't, will not get "screened out" in the body.

• A fact similar to this assumption also hoMs for Terms if none of _ occur free in r. c, fi(O__"') then:

mkTerm(o, n, a, M. fi)[F/F] = mkTerm(o, ,_. a. At. A5. fi(2)[F/F_

However, it turns out that this fact is not needed, so no proof is given.

*11 A simple fact about renaming bound variables:

V_, 27 : CVar '_. _ are distinct & _ are distinct & _ are not free in bi

=v mkCTerm(o, n, a, M. mkBndCTerm(x_, bi))

=,, mkCTerm(o, _, a, At. mkBndCTerm(ZL bi [_///Ti]))

6 Defining is_subs(

A flmction is a substitution function iff there exists an appropriate substitution that it Is equivalent to. First.

we describe this using CTerms, since we know how substitutions work on them:

is_subst,,(f) _= 3b: CTerm. 3F: CVar n. Vt: CTerm". f(t[) = b[t/F][ (1)

Note that f returns a Term which is an o-equivalenc(_ (:lass. so we have an equality rather than an (_-equality.

This should be equivalent to directly using a Term argument for f:

is_subs(,,(/) _= 3b: CYerm. 3_: CVar". VT: Term". f(F) = b[F[/F][ (2)

We should show that Vb : CTerm, VF: CTerm _', the two sub-expressions are equivalent.

(1) =_ (2) Instantiate t with the chosen Y[:

f(F) ,1 f (F[ [) (I=)b[ t/v] r

(2) =_ (1) Instantiate F with _[ and we get:

f(Yt) c2 b[iFL/_]f*_.4 b[i/-P][

We can now try to use a version that has all Term types and no CTerm types, using the o-terms substi-

tution, •[./-]:

is-substn(f) -= 3ba : Term. 3._2_, : Var". Vt_: Term". f(_o) = b,,[_/PS] (3)

Now, veriL, that this is indeed equivalent to the other two definitions:

3 Note that the o-equality is needed only because the substitution definition might introduce arbitrary renamings.
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(2) _ (3) Let b, = bl, I'_ = T;I, t)ick s()me t,, and instantiate T with it:

5[Kt/TI[; 5[L[Ct/v[LIt=5[[V,,IvI = 5.

(*) is true because of ,2 (with b).-3 (wilh 5), and -5 (with .rl, .r.,. t, F).

(3) _ (2) Let b = b,[. _ = _[, pick some P, and instantiate t(, with it:

f(V) (:&) b. I_1_,,_] = b,, [[_[1_[][= l)[F[/_][

6.1 The is_subst Rules

29

6.2 Justifying the is_subst Rules

The validity of the first rule amounts to this:

Vn, i:N +.i <_ t_ =:_ is_subst.(=i, )

_(g) = _i. Then, Vt :which is easily verified. Choosr distinct i_ = ¢_l,...,v, variables, and let b = ,-r,_

Term '_ 7r_7(t) ril-[/g] is true by the definition _i• = of ,,n, of "['/']l, an(t the distinctness of i_.

Our main result will be formulating and t)roving the validity of the second rule. but this formulation requires

sonle t)reparation. First, recall that the tyt)e of mkTerm is:

Opld -+ n :N _ a : (1...n--+ N) --+ (i : 1...n -_ SubstFunc,,) ---+ Term

Note that, as said earlier, a shifted operator is the result of applying mkTerm on the first three arguments.

since they define the operator symbol and the list of arities it expects. For exampl(_:

A = mkTerm('a', 1, (1}) E = mkTerm( ._, 2, (0, 1))

So. a shifted operator has the f(,llowing type, for some given o. n, and a:

mkTerm(o, n, a) : (i : 1...n--+ SubstFunca,) _ Term

Remember that the current goal is to conclude that for some shifted operator, o__d_:

is_subst(Y, ooid(_tS]-i, bl ..... v,--?, b,))

if

is_subst(_ b-i-. bl ) & ... & is_subst(x-, _. b,_)

Now that we have a reasonable d_,finition of is_subst, we define key rules whi(']l use is_subst Io prove thai

something is a t)rot)er Term. Th('se rules turn out to be quite simple - there are only two cases:

• H _- is_subst(.rl.x2 ..... :r,_..ci)

• H k is_subst(Y, o_N___(J-)T,bl;... ;_. b,_)) where o_ is some quoted opid

g _ is_subst(_, ._-. /_1)

H F is_subst(_,it_), b2)

H _- is_subst(_, _-_-n.b,)

Not.e that this is enough for proving the validit,v of any Term value: for example, quoted constants succeeds

immediately since their opid is quoted and they have no subterms. Proving t _ Term is achieved by showing

is_subst(, t). (Of course: this is rtot a complete set of rules, since there arc more cases where we have general

Term expressions that are not co_lstatlts.)
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We need to conlpose the _ flmction with an object that will make the result a Term/"---_Term flmetion

(consuming the a:l,.... ;rk variabh,s) which we then show is a substitution fimction. This means the flmction

that is composed with _ should get a tuple of Term t" as intmt and return the vector of _ substitution

flmctions, built by consuming .7. In short, we package all the necessary information in F:

F : Term _' _ (i : 1 ... 7_ _ SubstFunc,, )

so we get the expected:

mkTerm(o, n, (_) o F : Termt--+Term

Now fi)r the main result the wflidity of the second rule may be formulated thus:

Vo:Opld, n:N, a:(1...n--+ N), k:N,

F: Term t" --+ (i : 1...n _ SubstFun%,).

Vi : 1 ... i_. is_subst_.+,, (Ak _t,s, zs. F(ts)(i)(zs))

is_substk(mkTerm(o, n, (J) o F)

whexe (At,., z, y. B(z, y))(It I .... , _/k+n ) _ B((II1 ..... It/,. ). (111,.+1,-.., ll/¢+n )).,1

Proof. Assume o, n, a, k, and F are given as specified. We also assume that the constructed flmctions are

substitution flmctions; therefore, for every 1 < i < 7_ we get c, : Term, W,_ : Var _, _ : Var "_ such that:

vd, if,.. "...... , : F(,I ..... C,, =

• Let t, : Term k be some k Terms,

• let _ = newvar_, (F(t)(i)),

• and let :_ = newvark (A z-Ti-1,..., xT_/,).

Now we can proceed: our goal due to the definition of is_subst, is to derive an equality of the ft)rm

(mkTerm(o, ,_, a) o F)(_) = BI_/-X 1

where, and this will be the tricky part, B and _- are independent of the input. 7. So:

(mkTerm(o, n, a) o F)(Z) =

= mkTerm(o, n, a, F(t))

= mkCTerm(o, n, a, Ai. mkBndCTerm(Ti [, F(t)(i)(xT)[))[(mkTerm def. )

(F's fact) = mkCTerm(o, n, a,

(.7) = mkCTerm(o, n, u,

I-_./.] def.) = rakCTerm(o, n, a,

(.2t = mkCTerm(o, n, a,

(.J0 .... b_.w) = mkCTerm(o, n, a,

(.21 = mkCTerm(o, n, a,

(.[./.] def.) = mkCTerm(o, n, a

Ai. mkSndCTerm(_[, ci[[, F.i /uT_, "F__[))[

Ai. mkBndCTerm(_[, ei[Tq, Ti/_, _] [t/._] [)) [

Ai. mkBndCTerm(_[, ci [74, _-i/Wi, _] [[tk/_k]rk))V

Zi. mkBndCTerm(_[, ci[;_,_/ET, 27][[t[/,_[]))[

Ai. mkBndCTerm(_[, ci[_,xT/_, _] [))[t[/g[][

ii. mkBndCTerm(_[, ci [,_, _/Wi, _] [))[k[tL/:q[] r

Ai. mkBndCTerm(_T[, ciIs, _/_:i, _ [)) [_/__

In the above, making sure *10 applies needs some care. Assume that for some j, I, the variable s)[ is free in

the/th body, which is ct[g, _7/_-7, _-_[. \_ need to make sure in this case that _7[ is not fi'ee in either tj[ or

sj [. The latter is trivial by the choice of :¢ (and holds for all indexes), but the former is not obvious. What

we do know about 2-7[ is its definition:

_[ = newvara, (F([)(1))[= newvara, (ct It, ()"'/ETt, _])[

4 Note that this special form of A could be avoided if the fourth input type to mkTerm would take the terms first and

then the index (instead of the SubstFunc_,_), but that would require a special composition operation instead.
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t)ut sin(:(,s.ikis freeinc,IT<Z/F. PT_ L, then ut,j[Inust at)l)ear in _'1l; therefl)re, the choice of .77[ above must

pick variables that rio not appeal it1 ljl so we're safe.

Going back to the main proof, the last term of the equality chain built so far was:

mkCTerm(o, ,i,a, Ai. mkBndCTerm(_[, c_ {7_.._W/'_57,,_] [))[ [t/:_

which has the B[[t/.-Y] structure lhat we're looking for, but we're not finished 1)e('ause both the B and the

parts depend on 7 ae-7is defined in terms of t-. _ is defined in terms of .T,, and both B and X paris c(mtain

instances of _ (and t3 actual]y contains _7 as well).
I

So we choose t-independent values now: let x i = newvaro, (ci) and let ,s" = newvai'_. (P. iv'l ,. .. ,.r't,). we also

' s' instead of x-7, ._ is still the same value. In an attempt to simplifyIle_'d to show that in the above, using x i,

this we now choose 7, sets of variables T7 6 Term'*',..., z,_ 6 Term _" . which are completely fresh: they do

not aPtmar in anything mentioned so far, including t.

Now, back to our equality chain which left off at:

= mkCTerm(o, ,, .a, M. rnkBndCTerm(_[, ci _._. _/_77,, W_[))[ {7/._

By *11:

= _CTerm(,,, ,,. a, Ai. mkBndCTerm(_[. ,_, [_, _/_, _]l))[ P/-_]

Next, we use substitution to get s' inside _ are distinct s' are distinct, and s' does not occur in z-7:

= mkCTerm( o, ,,. a. Ai. mkBndCTerm(_-[, r'i [7_;g/7_. _-/lTg/.sW}/_, _ [))[ [t/7_

Because s' does not occur free ir_ ci, this would be the expansion of the following substitution by *9:

= mkCTerm(,,, ,t, o, ,Xi. mkBndCTerm(57L c, [s_, Z/tiT,, U_ [.V/.s-7_[)) [[t/:¢_

Combining .[./.] and ,2 we get:

= mkCTerm((), r), (1, Ai. mkBndCTerm(_[, ei I.s"t, TT/<, _ L[Tg[/s' []))r [t/a_

z_ do not occur in either _ or 7 so we can use *10:

= mkCTerm(o, ,). _,, Ai. mkBndCTerm(2-i [, ci gs', _/W,, FT,I [))[7_[/.s' [] [[[t/7_]]

Again, using 'l'/'_ and *2:

= mkCTerm(o. ,I, 0 Ai. mkBndCTerm(Nl, ci_s-7, g/_77i, _] [))r[7_/P]_t/=_

Now, _ does not appear in the mkCTerm except possibly for s' (because we know it is not in (', or 27), so using

*9 we get:

= mkCTerm( o, n, a, )_i. mkBndCTerm(ZL, ci [sw, Z/'Wi, _] [))[ l_lt/_] / .'47]

= mkCTerm( o rl, a, Ai. mkBndCTerm(_i [, ci [.7/, Z/_7, t-77][))[ [t/_

Finally using *11 we get:

= mkCTerm(o, n a, Ai. mkBndCTerm(x_L c_ Is', ,',/N, N_ L))[ [_./.7_

Our final term has the desired B_]/X] form, and now the B and the X l)arts arc indep(mdent of t. This is

befallS(":

• .,' depends only,, on ci;

• _ depends only on x' i and P. and therefore o111}, on

• and _ and _, just like (=, were derived from the assumption 1hat the inputs are substitution functions.

QED.
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7 Conclusions

Tile constru('tioll of tim Term tyl)(, was don(, to facilitate ext)osing internal Nut)rl flm(:tionality to Nut)rl

users, which, it is hoi)(,(l, will lead to a lightweight r(,flection implementation. We have shown tlw l)lausit)ility

of basing logical refle(:tiou on higlmr-order al)stra('t syntax, where each svnta(:tic ot)(,rator is (l(,not¢,(l (lir(,ct ly

I),V (4I[OthC'F ot)(,rator.

We are coIttimfing the implementation of refle('tion in the Nuprl system along thes(_ lines, and hol)(, to so(m

test this ('onje(:tur(_. The (:ore rules refle(:ting syntax that we showed ('orrect her(,, at( _ ah'ea(ty imI)l(_m(,nt(_(l.

r(,using (,xistiug int(_rmd fmwtionality, without involving con('ret(, symax. Initial (,xami)l(_s hav(_ in(ti('_l_(,(t
that it is, in fa(:t, us(,fil[.
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DOVE: a Graphical Tool for the Analysis and Evaluation of

Critical Systems

(Extended Abstract)

Tony Cant, Jim McCarthy, and Brendan Mahony
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D('partment of Def(mce,

P() Box 1500, Edinlmrgh, South Australia 5111.
Australia

DSTO's DOVE pro.ie('t [2] aims to t)rovide easy-to-use tools for tit(, analysis and evaluation of criti-

cal (lefen(re systems. Th(, (:urren( DOVE too] provides a graphi(:a/ front-etid to a staW-ma('hin(' reasoning

ellvironin(!llt (tevelope(1 in the Isabelle/HOL [4] environnlent.

- It allows the user to interact with a design in a highly visual way, t)erfl)rming many design, animation and

proof activities through direct manipulati(m of a graphi(:al presentation of the state-machine tot)olog.v.

- The XIsabelle (:omt)onent of I)OVE provides a grat)hi(:al enviromn(,nt for managing th(' constru('tion and

execution of tactical pro()f-seripts.

- It provides the user with a c(mlpreh_,nsive database of the stat('-machine design, in(:luding d(_finitions of

all the transitions, variables, constants, and properties assoeiate(t with the design.

- It allows the user to generate a high-quality presentation of the design in PDF format via the L-XTF_\

docunlent preparation svstem [3].

Exi)erien(:e in the use of DOVE has suggested a number of possible approaches to lint)roving the DOVE

tool.

- Many critical systems involve comt)lex interactions between numerous comt)onents. DOVE would benefit

gwatly from support for the hierarchical decomposition of designs and analysis activities.

- Many critical systelns involv(, analog (:ompone.nts, concurrency, stochastic and real-time interactions. An

ability to treat such issu(,s w()ul(t greatly enhan(:(_ the seol)e of the tool.

- High assurance development standards require the generation of numerous (tocuments describing various

forinal analyses of a design. Being able to generate a nunlber of different documents fl'onl a single formal

design, in various formats and for various audiences would 1)e of great vahle to DOVE users.

- Providing true assurance in a design involves the effective communication of the results of the analysis

process to a human audiene,_. This is a particular challenge for formal proofs in general and is nearly

impossible where preen are generated through the application of tactical programs as ix the case in

the current version of DOVE. In addition tactical proofs at'(" extremely brittle attd di_cult to maintaiu.

Proofs need to be structured in a manner more natural to the human reader and at a level of detail which

ensures the conmmnication of the salient points without overwhelming the user with arcane points of

formal logic. If possil)le preen should also benefit from graphical comprehension aids.

- The unstructured input of fl)rmal mathematical text can 1)e a painstaking process even for the most

experienced of users. An ability to assist and direct the construction of formulae is critical to the general

adoption of a fornlal analysis tool. A related point is the need to provide screen support for the man.v

an(1 varied mathematical symbols and notations demanded by mathematically advanced users.

- As a forlnal model grows, the t)roblems associated with any large data set become apt)arent. The user

spends it_creasiug atl_o_ltits of time and effort searching for the information necessary to mak(, progwss.

Tool support for the management of the design database is critical to the effi(:ient p(,rformance of formal

analysis techniques.

Concurrently with the develoi)meIlt of the DOVE tool, important imi)rovenlents have been ma(te to the

Isal)elle environment itself.
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- TheIsar em,ironment[6]nowprovidesa literateandinteractiveenvironnmntfor theoryandproof
develotmmntandpresentation.Isarprooftextsrepresentasignificantimprovement,overtacticalscripts,
bothin termseomprehensibilityandin termsof maintainability.However.asIsartu'oofsnowcontain
thestatementof Inanyintermediatefacts,theneedfor toolsupportin Ill(, Inanagementofdesignand
proofelementsisonceagainmadeapparent.
Theintroductionof theIsatooltool [7]hasprovidedIsabellewitha mechanisnlto structuringformal
developmentsassessionsandalsofor assistingin thepreparationof a (single)high-qualitydocument
t)resentationofasession.However,theneedto generatemanyviewsandpresentationsofasinglesession
has not been addressed.

- Integration with the Emacs-based Proof-General [1] tool now offers toot-supported management of inter-

active theory-script execution. Unfortunately, the Proof-General enviromnent ignores the hooks for tool

snl)l)ort provided by Isabelle mechanisms such as the session concept, docunlent gen('Tation, ()r inlpor-

tantly the assunle/S]IOW presentations of proof goals which could easily be alltO-illserled illlO the |he()rv

script.

- Supt)ort for the scxeen and docunlent t)resentation of a range of mathematical symbols has been pro-

vided through integration with the X-Symbols[5] package. Unfortunately, this does little to address a

flnldamental problem with Isabelle, namely the strong coupling of formal syntax and nlathematical pre-

sentation. An illustrative example of this problem is the inability to make use of the letter _o' as a logical

variable. The character has been co-el)ted to serve as a formal syntax for flmction composition. Such

synlaetic conflicts become more and more conllnon as the size and complexity of the theory database

increases.

With all of these factors and opportunities in mind, the DOVE project team has developed a flmdamental

re-design of tilt, DOVE tool. '_\'e have identified the following priorities for the next generation of the DOVE

tool.

- The basic function of the tool is to be the preparation of design assurance doculuents for the evaluation

and certification of critical systenls. It should allow the user to construct any number of do('ulnents ill

essentially arbitrary formats from a single project database.

- The tool should allow the user to group and maintain all formal elements, indexes and documents related

to a given project within a single project artifact.

- The tool should inchnIe a structured, syntax-directed editing mode for formal mathematical input. This

mode should allow the user to construct mathematical terms by making selections from a palette of

available operators.

- The tool should offer a decoupling of formal presentation and formal syntactic layers. This allows indi-

vidual users the maxinmm of presentation freedom without modification of the formal syntactic layer,

an especially inconvenient process for library and predefined theories. The user should be able to (:raft

presentations using arbitrary user supplied character fonts.

- The tool should provide powerflfl indexes and structured views of the modeling database. This is critical

for the efficient use of the structured editor anti should act as an enabling technology for powerful

tool-support for a number of other user activities.

- The architecture of tile tool should enable the future extension of the tool with specialised modeling or

reasoning environments.

- The tool should include a reasoning environment for the analysis of hierarchies of processes, allowing the

treatment of concurrency, real-time properties, and analog system components.

- The specification of temporal properties should enjoy a graphical presentation and imt)ortantly the proof

of temporal properties for state machines should be perforIned as much as possible through interactions

with the graphical presentations of the temporal properties and/or the state machine itself.

The next generation DOVE tool is currently in an advanced stage of design and initial prototype coding

has begun on the following features.

- An XML document style has been developed to enconlpass all elements of a (lesign t)roject, including

formal mathematics, indexing, and nmltiple document views.

- The graphical user interface and modeling database is being developed in Java. The use of an object-

oriented programming language is expected to gr_atly simplify future extensions to the tool.
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Thebasisofthetoolisth('designeditor,whichallowstheuserto interactwith theformal&,signusinga
fmniliardocmnent(:(mstrucli(,n metaphor. Tim design editor is based on the the Swing Document {'lass.

allowing it to be prototyped rapidly with an accepta|)le level of on-screen docmnent presentation.

The design editor will also control user-interaction with the underlying Isabelle/Isar ()llViI'Oillln,llt. The

editor atztomatically genoratvs legal Isabelle thetII'y files flToiIl tll(' design dO('lttlletlt _tIl(l controls tit(,

interactive processing of these files. Control of theory processing will b(' maintained through a "processed-

up-to' marker which is additional to the usual text entry cursor. The user controls theory processing bv

moving this logic cursor around the document. The design editor ln{,diates with Isabelle/Isar. providing

feedback to the user on the results of processing, particularly of errors encountered.

- Printed document t)resentation will be provided through the use of the DTEX document pret)aration

system. Access to inore sophisticated docunlent construction features, such as precision mathematical

tyt)esetting and bibliogral)hi('s, will be provided by allowing the verbatinl insertion of L.W_x2,'od(, into

the gOll{,l'at{){l LATF_X olltt)llt.

- A structured mathematical {,(titor is being l}rototyl}ed with s{}t}hisli{'aled stlt)t)ort for the use of math{,-

matical f{mts in the Truetyt)(' format. Math{mmtical intmt t}roceeds through th{, selection of C(}llStalllS.

tyt)o construct()rs, syntactic oI}erat{}rs, el cetera from t)alett('s that list the defined elements from lh(,

appr{}priate {:lass.

- A symbolic l)resentation layer has been incorporated into t|w structured editor, allowing th{, user to

challge the presentation of mathematical operators with a minimum of impact on the generated Isabolle

theories.

- Sophisticated tools for the description of hierarchies of components have been developed in Isabelle,

inspired I)y the Z schema calculus and mathematical toolkit.

- Isalmlle support for the design and analysis of networks of input/output process has been developed.

Dataflow-style diagrmns will be used to visualisation these network designs and to provide a graphical

user-interface for their COllStructioll and manitmlate.

- Enhanced Isabelle support for real-analysis is being developed ill collaboration with the Software Verifi-

cation Research Centre (SVRC) at the University of Queensland.

- Initial investigations into support for prot)abilistic progranlming techniques are being carried out in

collaboration with Macquario University.
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Abstract. \Ve consider the abstract (:onmland language of Dram(,, and hi._ a('count of general ('of

re('tness. \Ve t)rovi(te an ot)erationa] interpretation of his abstract ¢'ointllan(ls. arid tlS(' the automated

theorem t)roving system Isabelle to prove that this Ol)erational interl)rrtatioil h,a(ls [o Dulmr's seman-
tics.

Keywords: general correctness, al)stra(:t ('OIlllIl_-ln(]s.

1 Introduction

General correctness was introduced as an alternative to partial correctness and total (:orrectness by .]acobs

& Gries (1985) [5], see also Nelson (1989) [7]. Jaeobs & Gries use a relational model, representing a program

as a relation between initial states and final states: their space of final states inchules 2, representing

non-termination. In this way they (:an distinguish when a prograin guarantees termination, guarantees non-

termination, or neither. Neither partial correctness nor total correctness (alone) can (to this.

In [1] and [2], Dunne gives an account of general correctness, in which he gives a set of "abstract com-

mands", with associated semantics. For each abstract command, Dunne gives its semantics in terlns of its

termination condition, its weakest liberal precondition predicate and its frame, which is (loosely) the set of

t)rogram variables which nfight be altered by the conunand. From these one can derive total-, t)artial- and
general correctness senlantics.

We describe the abstract commands in terms of an operational interpretation similar to that of Jacobs

& Gries. We then use the automated prover Isabelle to show that this interpretation iml)lies the semantics

given by Dunne. We also use Isabelle to prove some of his inore difficult results. This paper refers to results

proved in Isabelle the code is available via tim author's home page (above).

In [3], Gordon provided an operational interpretation of progranls (eonlmands), and used the HOL

theorem prover to verify the axioms (rules) of Hoare logic. He explains in detail certain problenmtic aspects

of such work, which we will allude to briefly.

In [4], Harrison formalized Dijkstra's program h)gic in the HOL theorem prover, using a relation between
states and outcomes to model commands.

2 Modelling Commands and Conditions

Commands Typically one models a command (or program) as a function acting on the machine state. A

deterministic command which nmst terminate can be niodelled as a flmction returning simply a single new

machine state. A deterministic command which may or may not terminate couht be modelled as a function

which returns either a new state or nothing, representing the idea that a non-terminating command returns

no result. However if we represent a non-deterministic program as a flmction which returns a set of new

states, then this leaves us without a way of representing non-termination as one ()f sew_ral possible outcomes.

We also want to represent commands which are infeasible. (These are a usefltl bull(ling-block, even if

you don't want to write such programs, as Dumle discusses). In fact this, rather than non-termination, is

naturally tel)resented by a command returning no new state.

The solution (Plotkin [8], also used by Harrison [4]) is to consider (:ommand outcome.s, where an outcome

is either terminatioil in a new state or non-termination.

• Supt)orted by an Australian Research Council Large Grant
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Conditions Boolean exl)ressions, or conditions, on the machine state, oe('ur in work such as this in two

contexts. Firstly, many commands (such as if then else, or while do) ineorl)orate conditions on the state. A

stale is typically represented as a function from the set of variable names to their values. Tilt' condition in

su(:h a command will most naturally l)e represented as text in tile programming language, or as an abstract

svntax tree. but as it will be capable of being evaluated in any machine state, we migtlt well think of it as a

function of type state -+ heel (a,l_[ then we could treat the notion of state as an abstract entity).

Secondly. a condition Q ('an apt)ear in an exl)ression udp(C, O) (where wlp means weakest liberal pre-

condition), or in {P}C{Q} ([toare logic). It may be most natural to think of these as predicates on states

(or flmetions of type state -+ hod). However the rule fl)r wlp. and a related rule in Hoare logic, are

',,#(,r := E,q) = O[x := E] {P[x := El} :,, := E {Q}

By Q[:r := El we mean Q with o,'('urrenees of J" ret)laeed by E: various other authors writ(, tills as Q[:r/E].

Q[E/.r], qt,:-,_., Q(E/:r), {E/:r}Q, witll, eonfllsingly, both the first two being popular. The notion of sul)-

stitution in these rules is meaningless when P and Q are arbitrary predicates on states: they require P

and Q to be expressions written in the command language, or something like it, or as, say, abstract syn-

tax trees, containing literal program variable names. Note tidal file language for these predicates must not

be able to express a condition like "'no two different variables may have the same value" (for. then, what

would Q[x := E] mean?) However, P and Q may also contain logical variables, as in tile following Hoare

logic example (taken from Gordon[3, li5.0], where X, }', Z denote program variables and .r, !l denote logical

variables)

{X = xA_ = y}Z := x;x := _;_ := z{x = uA_" = z}

It is also wortil noting at this point that where boolean expressions are used in abstra('t t'onmlands (such

as the guarded command P _ A and the preconditioned e(lnmlan(t PIA) tile boolean P is not treated as a

fragment of code but rather as an arbitrary predicate on the state. Thus, as is clear from Dunne's treatment

of these eonunands, the possibility of P looping or producing other tilan a single answer is not considered.

Gordon [3] discusses these issues. What tiffs means for us now is that our analysis of man,v commands (not

including assignment) can be performed at the level of abstraction where a boolean expression is modelled

as a predicate on states, an(i a command is modelled as a fun('lion from states to sets of outcomes. The next

section contains the analysis at that level.

Frames Dmme has also defined that each abstract command has a fTume. Loosely, this is tit(, set of variables

which "might" be affected. N(lt_, however, that frame(x := x) = {3"}. Also), from any command a new

command may be defined which has an enlarged frame but is otherwise the same.

Stating tile frame of a c(_mman(i does not contribute to a description of wllat the command (to(,s. so we

can show, for example, that tw() commands behave the same way, witttout considering their frames. The

work in this section proceeds on this basis. Note that the results are therefore subject to the proviso that

two abstract comnlands are in fact not tile same if their frames differ. We think that tile relevant preen

about frames would be quite straightforward.

Consideration of literal commands and expressions and of the frames of commands is deferred to tile

following section, as is that of the assigmnent conHnand.

3 Commands as transformations of state

3.1 Monadic Types

.-ks mentioned, we model a command as a functi(ln from states to sets of outcomes. Here is the formal

definition of tile type outcome.

datatype outcome = NonTerm I Term state

So when we model sequencing of two comlnands .4 an(t B, we first apply A to a given state, obtaining

a set of outcomes, and we must then apt)ly B, a flmetion of type state _ outcome .set. to tile set of
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outcomes obtained from A. We can think of this as "extending" the flmetion B to a flmetion ewt 13 of type

outcome se.t --+ outcome set. When this can be done in a way that satisfies certain conditions, we call tilt'

relationship between the types a "monad". See Wadler [9] for flu'ther information on monads.

In fact, this is an example of a compound monad. The type outcome, relative to the type state, is a monad,

where the extension flmction, of type (state -+ outcome) -_ (outcome -+ outcome) wouht be given by

exto f NonTerm = NonTerm

e:rtof (Term ,s')m f,s

For any type (}, the type o set (the type of sets of things of type o) is also a mona(l, whero th(, ,_xwnsioil

fuIl('tion, of type (n: -+ a set) --_ (o set -+ (_ set), would be given by

exts f os= U f o

o_os

Apart from the extension flmction, st)ecification of a monad includes a "unit flmction, which ('onv(,rls a

value of the "base" type, usually in a rather natural way, to a value of the monadic type. For the two monads

mentioned, we have

unito : state _ outcome units : _ _ a set

unito s = Term s units e = {v}

Note also that the exte.nsion flmction is often called bind and written in infix format (as in [9]), so ext f s =
s bind f.

Two monads emmot in general be composed to form another monad, but the first monad mentioned above

can in general be composed with any other monad to give a compound monad (see [6, §7.3]). The formulae for

the extension flmction, both generally (in terms of units and exts) and for our specific choice of units and exts.

are given below. In the sI)ecific (:as('., extos has type (state-+ outcome set) --+ (outcome set-+ outcome set).

extos f os = eztos f os =

h:t f' (Term s) = f s let f' (Term s) = f s

f' NonTerm = units NonTerm f' NonTerm = {NonTerm}

in exts f' os in U(,eo, f' o

As mentioned above, a monad consists of flmctions unit and ext (of apt)ropriate types), which must

satisfy certain conditions, as follows:

ext k o unit = k

ext unit = id

ext ( ext h o k) = ezt h o ext k

(Left Unit)

(Right Unit)

(Assoc)

Let seq A B denote the sequencing of commands A and B (where A, B and seq A B are of type

state -+ outcome set). As noted, we want to first apply A to the given state, obtaining a set of outcomes: we

must then apply the extension of B (of type outcome set --+ outcome .set) to that set of outcomes. That is,

seq A t3 = extos 13 o A. Then we can prove the associativity of seq thus:

seq A(seq B C) = extos (seq B C) o A

= eztos (extos C o B) o A

= extos C o extos B o A

= extosCoseqAB

= seq (seq A B) C

by the monad nile (Assoc)

This is proved in Isabelle as seq_assoc. Dunne [1, §7] uses ';' for sequential composition, so he writes seq ,4 B
as A;B.



Formalising General Coriet'tll(_ss 39

The u'nit flmction, of type state --+ outcome ,set, of the conq)ound monad is given I)v

unites s = ,,nits (Term .s) = {Term .s}

This represents the command .s'kip. which ahvays terminates in its initial state.

3.2 Refinement

As we will often just give Isahelh, code, we mention some less obvi(ms Isabelle notation. The "?" indicates

a variable for which anything (()f" a suilable tyi)e ) may be sul)slituted. Some set and fimcfion notation

(mathematical and Isabelle equivalents) follows:

a __ UI,_c,D a ~: UN b:C. D

{t.,}U(CUD) _ Ef_F\G insert a (C Un D) <= E Int F - G

M'.E (Zx. E)

We (tefine functions corre_l)On,ling to wlp, trm, an(l wp of [1, _2].

wlpm ?cm ?bm ?state == ALL nst. Term nst : ?cm ?state --> ?bm nst

trmm ?cm ?state == NonTerm ~: ?cm ?state

wpm ?cm ?bm == wlpm ?cm ?bm &_ trmm ?cm

H('re g_g_and I I lift conjur,ctiort and disjunction over states, and ---> is the "is stronger" relation between

predicates, so

?p ---> ?q == ALL s. ?p s --> ?q s

(?p && ?q) ?s == ?p ?s & ?q ?s

(?p I I ?q) ?s == ?p ?s I ?q ?s

These definitions work with (:ommands and conditions as functions of type ,state --+ outcome ,set and

,state -+ bool respectively. We not(, that a command (as such a function) is uniquely deterInined by its wlp

and termination conditions. This is proved in Isabelle as unique. Later we will introduce corresponding

(differently named) fimctions which take abstract syntax trees as arguments.

In [1, §5] Dunne discusses several notions of refinement, including general-, total- and partial-correctness

refinement. The second equivalent definition of gencref is derive(1 from Dnnne's (Gcref2) ([2, §2.1]).

totcref ?Am ?Bm == ALL Om. wpm ?Am Qm ---> wpm ?Bm Qm

partcref ?tan ?Bm == ALL Qm. wlpm ?Am Qm ---> wlpm ?Bin Qm

gencref ?Am ?Bm == partcref YAm ?Bm _ totcref ?Am ?Bm"

gencref ?Am ?Bm == partcref ?Am ?Bm & (trmm ?Am ---> trmm ?Bm)

From these definitions w(_ have derived more direct characterizations of these three notions of refinement,

It is worth noting that the characterization for general correctness is simpler than the other two although it

is defined in terms of both of them; this no doubt explains how general correctness semantics often seems

simpler than either partial or total correctness semantics.

totcref ?Am ?Bm = (ALL st. ?Bm st <= YAm st I NonTerm : ?Am st)

patterer ?Am ?Bm = (ALL st. ?Bm st <= insert NonTerm (YAm st))

gencref YAm ?Bm = (ALL state. 7Bm state <= ?Am state)

3.3 Meaning of Commands

skip, perhaps, magic, abort [1, §71 skip is the command which is feasible, ternfinates and does nothing

to the state. It is exactly the flmction unites. It folh)ws immediately from the (Left Unit) and (Right Unit)

monad laws that skip is an identity (left and right) for tim binary flmction seq. These are proved in Isabelle

as seq_unitL and seq unitR. \Ve define

perhaps ?st == {Term ?st, NonTerm}

magic ?st == {}

abort ?st == {NonTerm}
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preconditioned command [1, §7] The command PI.4 is the same as A exc(,l)t that. if P does not h()l(t.
then Pl.-t may fail to terminat(,.

precon ?bm ?cm ?state == if ?bm ?state then ?cm ?state else insert NonTerm (?cm ?state)

guarded command [1, §7] Th(, command P ---+ A is the same as A if" P holds, but is i_tfeasible (the
out('ome set is empty) if P does not hold.

guard ?bm ?cm ?state == if ?bm ?state then ?cm ?state else {}

A command has a "natural" guard an(t pre('oIL(tition. Here fis .4 means A is feasible, that is. its outcome
set is non-enq)ty. We have l)roved

fis_guard = "guard (fis ?Am) ?Am = ?Am"

pc_trm = "precon (trmm ?Am) YAm = ?Am"

choice In [1, §7] Dunne defines a binary operator, .4_B, for bounded choice: .4DB is a (!ommand whi('h

can choose between two (:otnman(ts .-t and B. This is a special case of choice among an arbitrary set of
commands, (telined by

I Icho_c(? C s = U c s
cE('

choice ?cms ?state == UN cm:?cms, cm ?state

From these, we prove the definitions, and some otlmr results, of Dunne.

perhaps_alt = "perhaps = precon (%st. False) unitos"

magic_alt = "magic = guard (_st. False) ?A"

abort_alt = "abort = precon (_st. False) (guard (_st. False) ?h)"

pma = "seq perhaps magic = abort"

asp = "choice {abort, unitos}= perhaps"

concert [1, §12] The command A#B represents .4 and B executing indet)en(hmtly , on set)crate copies of

the state: whichever of A or B terminates first gives the effect of A#B. Thus the t)ossible outcomes of A#B
are:

Term s, if it is an outcome of A,

- Term .s', if it is an outcome of B,
- NonTerm, if it is an out(:ome of both .4 and B.

conc ?Am ?Bm ?state == concrs (YAm ?state) (?Bm ?state)

concrs ?crl ?cr2 == ?crl Un ?cr2 - {NonTerm} Un {NonTerm} Int ?crl Int ?cr2

Interestingly, this means that if B is magic (everywhere infeasible), then A#B is just .4 with any possibility
of non-termination removed (difficult though it is to see fl'om the first senten('e at)eve!). This is t)roved in
Isabelle as cone magic.

The wlp and termination conditions for these eomnmnds, which are used by Dunne to define these com-

mands, are i)roved in Isabelle from our definitions, as precon trm, precon_wlp, guard_trm, guard_wlp,
seq trm, seq_wlp, choice_trm, choice_wlp, conc_trm and conc_wlp. Dunne's resuhs Xpre, Xguard, Xas-
sump and Xassert are also proved in Isabelle, under the same names.

3.4 Repetition and Iteration

finite repetition [1, §7] Dunne defines A ° -- skip and A "+l
proved, called rep_Suc', is that A "+1 = .4"; .4.

= A; A". A very convenient result which we
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repetitive closure [1, §12] \Ve also (lefined retail c .s"= [.J,, r_7, _ c .s. ie.

repall ?cm ?state == UN n. rep n ?cm ?state

that is, repall ,4 is the (un[)oilllde(i) choice of any num|)er of repetitions of .4. The termination condition

for repall .4 is that for every _l. A '_ terminates (proved as repall_term).

The repetitive closure of .4 is A*. where the outcomes of A _ are thos(, of repall, augmented by NonTerm in

the case where it is feasible to execute A infinitely many times sequentially (we (:all this an "infinite chain").

It is considerably easier to define this concept operationally than in terms of wlp and trm. The definition of

this circumstance asserts an infini_(' sequence of states, el which each is reacimble from the previous one. \V(,

omit tiw Isabelle definition.

i'r@h .4 s - Sf. f 0 =., A (Vn. Term (f (_ + 1)) 6 A (f _))

Thus we have the definiti(m

repstar ?cm ?state == repall ?cm ?state [In (if infch ?cm ?state then {NonTerm} else {})

It may I)e noted that in [l, _il()], Dunn(, defined a predicate tic ("c.v('h's and infinit.e chains"), with the

int(_nded meaning (in effect) that cic A s be true if A, executed in state s, nfight not terminate. However

the definition made tic A s trim in the situation where A could be execut(,d any given 7z times sequentially,

which is not sui[i(:ient to ensure an infinite chain of executions. (It wouht be sufficient under an assuml)tion

of hounded non-determinacy, see [4, _3]). As is a common experience, we did not discover this discrepancy

until trying to perform Isabelle proofs based on the definition in question.

We have proved some usefifl results, such as

wlpca : wlp(A*) = wlp(repallA) (since they differ only in that .4* has an additional possibility of non-

termination)

seq_repstar : .4"; .4 = A; .4"

In [1, §12] Dunne mentions that rei)etitiw, closure couM be defined using E.qli-Milncr apl)roximation [1.

.4 < ..... 4' - .4 _trot A' A .4' _E,..... 4

where _Ere¢ and _par denote respectively total- and partial-correctness refinement. Then A* is a least fixt)oint

under the ordering <_(:,,_:

A* =_ p_m X.( A; X )[:]skip

We show in Isabelle that our definition of A* implies this result. Her(' fprep_alt2 is a paraphrase of our

definition of fprep (fprep A X means X = (A; X)[::]skip), repstar isfp says that A* is a fixpoint, and

repstar is lfp says that A" is less than or equal to, in the Egli-Milner ordering, an), given fixpoint Y.

fprep alt2 = "fprep ?Am ?Xm = (?Xm = choice {seq ?Am ?Xm, unites})"

repstar isfp = "fprep ?Am (repstar ?Am)"

repstar_is lfp = "fprep ?Am ?Ym ==> egMil (repstar ?Am) ?Ym"

Dunne (personal communication) also defines tern(A*) and w/p(A*, Q) as fixpoints:

trm(A*) = uI'.wp(A, Y)

wlp(A*, Q) = pl\wlp(A, Y) A Q

where p and t/ denote the least and greatest fi×points, that is the weakest and strongest (respectively)

fixpoints. \\_ also prove these results in Isabelle, based on our definition of A _. trfp and wrfp say that

tern(A*) and wlp(A*. Q) are fixp()ints of the respective functions, trsfp says that trm(A*) is equal or weaker

than any given fixpoint }', and similarly for wrwfp.

trfp = "let trmstar = trmm (repstar ?Am) in trmstar = wpm ?Am trmstar"

trsfp = "?Y = wpm ?Am ?Y ==> trmm (repstar ?Am) ---> ?Y"

wrfp = "let wlpstar = wlpm (repstar TAm) ?_m in wlpstar = (wlpm ?Am wlpstar _ ?Qm)"

wrwfp = "?Y = (wlpm ?Am ?Y &_ ?Qm) ==> ?Y ---> wlpm (repstar ?Am) ?Qm"
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3.5 Monotonicity

For deveh)ping a progranl by starting with an abstract expression (of rettuirenmnts), and progressively refining

it to a concrete program, it is important that the abstract comnlands constructors at'(, monotonic with respect
to general-correctness refinement (___q_,_).

Given our characterization of ,4 Eg_,_ B as (Vstate. B .state C ,4 state), and our operational (tefinition of

commands in terms of their outc(mm sets, it is easy to see that all the constructors melltioned arc monotonic.

In any event, they are proved in Isabelle as (for example) seq_ref mono, rep_ref_mono, repstar_ref_mono.

3.6 The while loop

In [1, _7, _12] Dunne defines

if G the_,,A eud - (G --+ A)_(-<; --, .skip)

while G do A end - (G _ ,4)*;-_G --* .skip

The definition of while which is intuitive to programmers is

while G do A end = if G then A; wh,ile G do ,4 end end

We (:annot use this as a definition it] Isabelle since it is recurs|re as it stands it is non-terminating, and
when applied to a particular state ma.v not terminate. So in Isabelle we have define(l while as does Dunne.
and have proved that it satisfies the "intuitive" definition.

while_prog = "while ?G ?A = ifthen ?G (seq ?h (while ?G ?A))"

4 Frames and Variable Names

In §3, we viewed a command as a function fl'om a state to a set of outcomes, and a condition as a predicate

on states. In this treatment, the view of a state was abstract. As discussed in §2, there are various ways in
which a full treatment needs to be more concrete, namely

- referring to program variables

- having conditions in a form in which we can substitute for a progrmn variable
- specifying a frame for a command

It] this section we discuss those abstract command constructors which require us to address these issues.

In our Isabelle model, the program variable names are strings and they take natural nl|nlber values. As

a state is an assignment of variables to values we have the type definition state = "string => nat"

indeterminate assignment [1, §12] Where x is a (list of) variables, and P is a predicate, the command

x : P assigns values to the variable(s) in x in any way such that the change of state satisfies P. More precisely,

if a is the "current alphabet" (the set of variables whose names are currently "in scope"), and x0 is the set

of variable names in x, but with subscript 0 added, then P is a predicate on _ U x0. (The paper [1] says
a U a0 we comment on this below). The subscripted variable names represent the values of those variables

before the command is executed. We model such a P as a timer|on on two states, so our definition of this
command is

indetass ?vars ?P ?s == Term ' (Collect (?P ?s) Int chst ?vats ?s)

where chst ?vats ?s means the set of states which differ from ?s only in the variables ?vars, f ' X means
{fx[x e X},and Collect (?P ?s) means {s'lP,s s'}.
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prd [1, !il0] Tilt, "l)(,for(,-afl('r'" I)r('dicato prd Sl)('cifies conditions under which th(, connnand may lerlnilmtc

in a state where variables hay(, c(,rtain given vallloS. DIlIIII(, (t(,[/ii(,s lhis as

prd (A) - _w/p (.4,.r # .,")

wher(' ,r' are new (logical) variabl,,._ corresponding to the program variables. Wo define prds and prdm. as

prds ?sirs ?dashed TAm == Not o wlpm ?Am (Zst. EX str:?strs, st str ~= ?dashed sir)

prdm ?dashed TAm == Not o wlpm TAm (_st. st ~= ?dashed}

where ?dashed. of type .state. r('I)r_,s('nts tlw values 2". amt prdm is a simph'r version of prds for use wh('n

:r can be taken to be all variable names. As a sort of invcrs(, to tiffs dt_lCillition, DlllIIW giv('s wlp (.4, Q) -

Vx'.prd (.4) :a Q[x := .r'] which w(' i)rove as

wlp_prd = "wlpm ?Am ?Qm ?state = (ALL dashed, prdm dashed TAm ?state --> ?Qm dashed)"

In [2, !i9] Dmmo states tlw r(,sult prd (a" : P) = P[:0, a" := :r, :r']. W(, provod a corresponding resuh for

the spocial cas_, where .r repr_,senls all variable names

indetass_prd = "prdm 7dashed (indetass UNIV ?P) ?state = ?P ?state ?dashed"

but found that we could not prove the stated result generally. It turned out that DmmCs result requires

that P be a predicate on a U x0. not on a: U a0 (as stated in tlw palwr). This is another example of the

common situation that attempting, to prove such results formally detects points such as this which can easily

be overlooked in an informal treatment.

unbounded choice [1, §7] The ('(nnmand (()z..4) means that variable z is to |)e set to any vain(, and then A

is to by ex(_cuted. But z is to 1)e a "local" variabh_ in A; if, for (,xample, Q contains z. t.h(m it is a differe_t z

from that in A. In other words, the notation (:orreclly reflects that z |)ohaves as normal for a I)ound variable

(it can l)e a-converted with no (:hang(_ in meaning).

So we model this command as follows:

set variables z to arbitrary vahws

-- execut(! .4

- res(,t variables z to thoir initi;d values

setstrs ?strs ?strfun ?state ?str == if ?str: ?strs then ?strfun ?str else ?state ?str

revert ?strs TAm ?initst == mapos (setstrs ?sirs ?thirst) (?Am ?initst)

at ?strs TAm ?initst ==

let initptf = _,strfun. setstrs ?sirs strfun ?thirst;

initptc = Y,x. UNION UNIV (TAm o initptf)

in revert ?sirs initptc ?initst

Hore. UNION UNIV F = U.,. F .r. and mapos is the monadic "Inal)" function:

mapo.s f ocset = {mapo f ._ I s e ocse*}

mapo f (Term s) = Term (f s)

m, apo f NonTerm = NonTerm

\Vo then prow_d

at_trm = "trrmn (at ?strs ?Am) -- allstrs ?strs (trmm ?Am)"

where allstrs strs B .s m_'ans that for any other state s' obtained bv taking s and setting the variables

strs to any values, B s' hohls. \Ve tried to prove

wlpm (at ?strs ?Am) ?Qm = allstrs ?strs (wlpm ?Am ?Qm)
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but could not. This reflected the fact that the formula fi)r wlp (:az.A) given by Dmme assumes that Q does

not involve z. (As noted above, the c_-conw_rtibility of z in :(_z..4 means that we can sensibly assmne this).

In fact we proved

at_wlp = "indep ?strs ?Qm ==> wlpm (at ?strs 7Am) ?Qm = allstrs ?strs (wlpm ?Am ?Qm)

where indep z Q means that Q is "independent" of z. As Q is a semantic expression, not a syntactic one

(see _4.1), "independent" was defined to mean that changing _ does not change (_).

4.1 Assignment; the Syntactic View

As noted in §2, wlp(.r :_- E', Q) -- Q[x := El, which is only meaningflfl when Q is seine structure in which we

can (lefine substitutions. So we have defined tyt)es for the al)stract-syn/ax-tree version of int(,ger and I)()olean

('xpressions, thus (al)l)rtwiated):

datatype exp =Num nat

[ Var string

[ Pluss exp exp

I Minus exp exp

] Timess exp exp

datatype bexp = Eq exp exp

Lt exp exp

Le exp exp

Gt exp exp

Ge exp exp

Nott bexp

T

F

And bexp bexp

Or bexp bexp

Impbexp bexp

_(tefined substitution flmctions, ofthe _llowing tyl)eS

expSub :: "string => exp => exp => exp"

bexpSub :: "string => exp => bexp => bexp"

where (_r example) expSub x E M means Mix := E]. _%' also defined Nnctions to translate an expression

(tyl)e e:rp or be:rp which we will call a syntactic expression) to the corresponding flmction of type state -_

nat or state --+ bool (which we will call a semantic expression). \_%, may also say the semantic expression

is the "meaning" of the syntactic expression. Obviously, distinct syntactic expressions nlay have the salllP

meaning, and there,)re the "=" symbol in a proposition of the %rm "w_ (A, Q) .... " can only b(_ sensibly

interpreted as equality of semantic expressions, notwithstanding that in "w_(x := E, Q) = Q[x := El".

the right-hand side is only meaningflfl as a syntactic expression. _, can talk about syntactic and semantic

commands also.

types

expMeaning = "state => nat"

bexpMeaning = "state => bool"

consts

expMng :: "exp => expMeaning"

bexpMng :: "bexp => bexpMeaning"

_canthent)rovethe _)llowing results, an(lcorresponding ones _)rl)ooleanexpressions.
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subLemma = "expMng (expSub ?x ?E ?Q) 7state = expMng ?Q (?state(?x := expMng ?E ?state))"

sub_equiv = "expMng 7(_ = expMng ?R --> expMng (expSub ?x ?E ?{_) = expMng (expSub ?x ?E ?R)"

Here f(x := E) is Isabelh, notation for the function that is like f except that its value at argunlem .r is E.

The first of these results relates substitution for a w_riable in an expression to assignmem to that w_riable

in the state. The second expr(,sses that if two syntactic expressions have the same meaning, then the results

of making the same sllhstitlltioI! ill the two of theIll also have the same meaning. (Thanks to Dmme for

pointing out the need for this resull).

\Ve are now in a position to (lefine assignnlent and prove its properties. \Ve define assignv and assigne

for the assignment, to a variable, of a value and a (semantic) expression respectively. We also define assignvs

for the assignment of values u) a set of variables.

assignv ?var ?n ?state == {Term (?state(?var := ?n))}

assigne ?var ?E ?state == assignv ?var (?E ?state) ?state

assignvs ?strs ?strfun ?state == {Term (setstrs ?sirs ?strfun ?state)}

V%'e tail then prove ass_trm (which is trivial an assigmnent terminates), and ass_wlp, which says wlp(.r :--

E, Q) = Qp-:= El.

ass_wlp = "wlpm (assigne ?x (expMng ?E)) (bexpMng ?Q) = bexpMng (bexpSub ?x ?E ?Q)"

4.2 Normal Form

In [2, ._7.1] Dunne gives the following result, giving a "normal form" for all abstract command .4.

A = t,-m (.4) [ :_tS.p,-d (.4) _ x := x'

Here x is the frame of A (which we first take to be the entire current alphabet of variable names), and x'

is a corresponding set of logical variables, with names dashed. For this purpose we want somewhat different

definitions of (a and of .4, inwflving a set of logical variables x', one for each program variable. So we use a

function dashed, of type state, which gives the values of these logical variables.

atd TAd ?state == UN dashed. TAd dashed ?state

Here ?Ad is not a semantic eoInmand, but a flmction which, given a "dashed" state as argument, returns

a semantic command. Then also the assignment a: := x' (where x represents all variables) becomes the

replacing of state x by "state" a". Thus we prove the following corresponding result.

ACNF = "?A = precon (trmm ?A)

(atd (%dashed. guard (prdm dashed ?A) (%st. {Term dashed})))"

We also proved a corresponding result fl)r the case where x is a proper subset of all variables. Here Dunne's

result requires that A does not change variables outside the set z. Rather than specify this requirenlent as

such, we proved a resuh whose left-hand-side means "A restricted to x", that is, as though you executed .4

and then reset the variables outside x to their original values.

ACNFs = "revert (- ?x) ?A = precon (trmm ?A)

(atd (%dashed. guard (prds ?x dashed ?A) (assignvs ?x dashed)))"

4.3 Frames

In Dunne's formulation [1, ._7], each abstract command comes decorated with a frame, and the frame of tile

new command is defined individually for each abstract command constructor: for example

f,'amc (AE]B) = frame (.44#/3) = frame(A) U f_'amc(B)

However we are unable to give an exact semantic meaning to the frame in a similar sense to the meaning we

have giwm to comnmnds so far. The frame may be thought of as a set of variables "potentially" set by the
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connnands,but it canbelargerthanthesetof variablesactuallysetbythe('onnnand.Tileframemaybe
smallerthanthesetof wu'iabh,sreadbythecomman(t,andtwoeomnmn(lswhichhavethesamesemanti(.
meaningcanhavedifferentfl'ames.Accordinglywecouhlnotattemptto t)rovetheslatementsat)outframes
givenbyDunnein thedefinitionsof al)stractconmmndsfl'omourol)erarionalmodel,in thewaywehave
donefor their wlp and trm conditions. The best one couht do is to attempt to t)rove that for any abstract

comnmnd the frame of the result contains tit(, set of variables which are changed by the conunand. How(,v(,r

this does not look at all difficult in any (:as(,. and so we have not included frames in our model.

parallel composition [1, §12] This is the only abstra(:t command operator whose meaning depends on the

frames of its operands. The comnmnd A[IB executes A and B, independently, each on its own ('opy of the

variables in its fl'ame, anti waits until both have terminated. (Thus, non-termination is a possibh, out('onle of

A]IB if it. is possil)le for either A or B). V_'e say a new state resulting fl'om A is corr,patible with a new state

resulting from B if these new states agree on the values they give to the variables in fro, me(A) n f_umc(B).

Then, for each (s_, st_), where s_l and st_ at'(, conq)atible new states resulting from ,4 and /3 resl,e(:tively.

there is an outconm Term .%_1_ of AItB, where .s,l/_ is given |)y:

- the new values of variables in frame(A) N fTumc(B) are as in s,_ (or .s't_),

- the new values of variables in fTume(A)\frame(/3) at'(, as in sA, att(|

- the new values of variables in fTume(B)\f, ume(A) are as in .sl3.

Dunne defines .411/3 by

t,..,(All B) = t,-.,( .4 ) A t,..,_(B)

prd(AI IB) = prd(A)/_ prd(B)

but the latter formula contains an implicit reference to the frames of the commands. It is interesting to note

that if A is infeasible, and B is feasible but does not terminate, then .-11]/3 is feasible but does not t erminale.

We consider first a version of this command for which the frame is the entire set of variables, defined by

pcomp def and pcomprs_def ; for these, we prove the formulae just mentioned, as pcomp_prd and pcomp_trm.

We also prove as, pcomp_wlp, a result (conmmnieated by Dunne)

wlp (AIIB) Q ._. = 3QI Q.,,.(Vt.Q1 t A Q.,, t _ Q t) A wlp(A, Ql) s/_ wlp(B,Q.,,) s

Unusually, we have explicitly referred to states s and t in this statenmnt of the result to make it clear that

the choice of Q_ ant! Q2 (tepends on the state s.

The following definition of AltB takes into account the fl'ames of A and B. Firstly, pccomb combines two

states (resulting from A and B) if they are compatible.

"pccomb ?frh ?frB ?initst (?sth, ?stB) =

(let compat = ALL str:?frA Int ?frB. ?stA sir = ?stB str;

combst = Y,str.

if str: ?frA then ?stA str

else if sir : ?frB then ?stB str else ?initst str

in if compat then {Term combst} else {})"

"pcompfr ?frA ?A ?frB ?B ?state ==

let tsh = {st. Term st : ?A ?state};

tsB = {st. Term st : ?B ?state};

nont = {NonTerm} Int (?A ?state Un ?B ?state)

in nont Un UNION (tsA <*> tsB) (pccomb ?frA ?frB ?state)"

Here (tsh <*> tsB) means the set product of tsh and tsB. The resuh pcomp_chk is a sanity check that.

where the frames of A and B are the set of all strings, this definition is equivalent to the one mentioned

in the previous paragraph (a useflfi check, since our first attempt at the definition above was erroneous).

Noting that Dunne's formula prd(A lIB) = prd(A) A prd(B) implicitly refers to the fl'ames of the ('ohm,ands.

we prove it as pcompfr_prd, as follows:

pcompfr_prd = "prds (?fh Un ?fB) ?dashed (pcompfr ?fh TAm ?fB ?Bm) =

(prds ?fA ?dashed TAm _& prds ?fB ?dashed ?Bm)"
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5 Conclusion

\V<, have provided an op(,ralional model for Dunnc's abstract conmmnds and their operators, except that

our model do(_s not provide any information about th(, frame of a command. Based upon this model, we

have b(,e,n able to prove, using tb(, automat(,d prove,r lsabelle. Dmm(,'s d(,finitions of the abstract command

operators, exc(,t)t their framt,s. That is, we have shown that they folh)w fi'om our operalional mod(,l.

We hay(, discussed th(, probl(,ms in including the fram(, of a colniili/ii(] in this work. Briefly. whi](, th(,

fl'aln(, of a command might b(, thought (if as tim set of varial)h_s whi(:h "might" |)e set l)y th(' c(niltilalld,

COllIIllallds SllCh as :/: := 31 (wh()r;P fralne is {.r}) prevent us from (lefining the conunand's frame from its

b(qmviour. \V,,could hay(, atl:(,inpt(,(l to show that the frame of a COllllllall(| (as (h'fin(,d 1)3"Dram(') conforms

to a rule that the frame COlllaiils all}' variable which can be changed by th(, ('(/llli[lltll(1. [)Ill this g(,nerally

SCOlnS O[)Vi(IllS.

Formalising th(' various ¢h,finitions for us(' in thc mechanised prover has highlighted astl¢,e'ts of the Sl)(,c-

ification of commands which nc(,d to be considered, [)llt arc easily overh)ok(,d mltil on(, formalises th('m.

Examl)les of this at_pear in our discussions about "syntactic" and "semantiC' expr(,ssions and commands.

and about tlw ]anguag(' in which "s.vntactic" ¢_xpressions may }>_,(,xpr(,ssed.

Acknowledgement. We wish t_ thank Sit,v(, Dmme fin" his very great assistance in sore(' h,ngthy discussions

on ttw topic.

References

1. Steve Dmme, Abstract Commands: A Unif()rm Notation for Specifications and hnplementations, ht Computing:

The Australasian Theory Symposium (2001), Electronic Notes in Theoretical Computer Science 42. http://www.

elsevier, nl/gej-ng/31/29/23/68/22/show/Products/notes/index, htt #008

2. Steve Dllnne, A Case for General Correctness, su[lnlitted.

3. Michael J. C. Gordon. Mechanizing Progralnming Logics m Higher Order Logic. In G. Birtwistle and P. A.

Subrahmanyam (editors), Current Trends in Hardware %_rification and Automated Theorem Proving, Springer-

Verlag, 1989.

4..lohn Harrison: Formalizing Dijkstra. In .Iim Grundy. Mah:ohn C. Newer (Eds.): Theorem Proving in Higher

Order Logics, (TPHOLS'98), Lecture Notes in Computer Science, Vol. 1479, Springer, 1998. 171-188.

5. Dean Jacobs and David Gries. General Correctness: A Unification of Partial and Total Correctness. Acta Infor-

matica 22 (1985), 67-83.

6. Sheng Liang, Paul Hudak, and Mark P .lones. Monad Transformers and Modular Interpreters. In Symposium on

Principles of Programming Lauguages (POPL'95), 1995, 333 343.

7. Greg Nelson. A generalization of Dijkstra's calculus. ACM Transactions on Programming Languages and Systems,

11 (1989), 517-61. Or see DEC (now Compaq) SRC Research Report 16, http://gatekeeper.dec, corn/pub/DEC/

SKC/research-reports/abstracts/src-rr-O16. html

8. Gordon D. Plotkin. A Power-domain construction. SIAM J. Comput. 5 (1976), 452 487.

9. Philip %Vadler. The Essence of Fmlctional Programming, In Symposium on Principles of Programming Languagr,s

(POPL'92), 1992, 1 14.



Automatic Constraint Calculation using Lax Logic*

.lerenly E. Dawson j and Matt Fairtlough '_

Department of CmnI)uter Science and Automated Reasoning Group

Australian National University Canberra ACT 0200, Australia

j eremy©discus, anu. edu. au

2 Det)artmen t of Coml)uter S(:iei_.ce, The University of Sheffield

Regent Court, 211 Portolmllo Street, StletJi(,l(1 $1 4DP, UK

matt_dcs, shef. ac. uk

Abstract. Earlier papers have described how lax h)gic can l)e used to develop verified designs, whet(.

the lax logic modality is taken to represent some constraint. \\'e show haw to use Isab(_llCs instantiation

of variables to obtain elegant proofs of results whi(:h are true sut)j(_ct to (:onstramts, and to d(!rive these

constraints. \V(' show how this method can be applie(1 to rxamt)l(,s of har(twar(, (h_sign (wh(,rr the

constraints relate to timing) and to a mlmerical fun(:ti(m (where the constraint is that the ma('hin(,

word length is sufficirnt).

The Isabell(, files r(,quircd to run the examples in this paper may br fi)und in

http ://www. dcs. shef. ac. uk/"matt/lax/i sabelle/Public

Keywords: lax logic, machine-checked proof, hardware timing

1 Introduction

In [7] Mendler describes Lax Logic and how its single modality may be used to represent that a condition

is true up to satisfaction of some constraint. He gives examples, including the calculation of the factorial

fimction using increment and multiplication, which are themselves accurate only up to a constraint. In the

factorial example, he takes the constraints on these to be that the word length of the computer is sufficient.

In [4] Fairtlough, Mendler and Cheng have described how to analyse the behaviour of hardware, where each

particular predicate on the state is true only at c¢_rtain times, so the constraint is that the t)re(ticate is

considered at the "right" time. They note that the proof of the "logical" result (e.g, for an and-gate, that

if the inputs are true then the output, is true) can be separated from the timing constraint (that the inputs

have remained true over a certain time interval), and suggest that the proof algorithm coul(1 actually he

used to calculate the constraint. They go on to describe some examples.

In this paper we flesh out this suggestion and consider some examples, including the "latch" example of

[4] and the "factorial" example of [7]. We show how we can perform an Isabelle proof in the usual way. but

with the constraint initially being a variable, which gets instantiated during the course of the proof. In this

way the constraint is generated by the prover which also prove.s it correct, in the sense that it implies the

corresponding predicate.

Such calculated constraints are not in their simt)lest form. In Se.ction 3.1 we describe some conversions

written to help simplify the constraint which was calculated for the 'qatch" examI)le, which we expect woul(1

be useflfl for other automatically generated tinting constraints.

1.1 Lax Logic

In [3] Fairtlough and Mendler develop "Lax Logic ''l. This is descrit)ed as an intuitionistic modal logic, with

a single modality _,O. which obeys the fClowing axioms:

©R : 3I D ©M

OM : OOM D OM

OF : (MDN) D (OM DON)

" this work was supported by EPSRC under grant GR/L86180

The logic has been indcp(,ndently invented bv Curry [2] and Benton, Bierman & (te Paiva [1]
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Oneinterpretationof themodalityO is thatit denotesananon3unousconstraintor qualification of some

sort, their is, @.'_1 iileans that sl/ holds und('r some (unspecifi(,d) constraint or qualification. For example.

the constraint may be that a certain condition C holds, so ©31 is C D 31, but C is not made explicit.

The latter two axioms may be replaced by the single axiom ©E, and ©S and '©C are also usefld.

(,E : (31 _ ON) D (©Al D ©.\')

(S : (O_11 A OA r ) D O(31 A N)

OC:(M DOX) D(L DOM) D(L DO.\')

Lax Logic can be express(,d in a Gentzen-style calculus, with the usual singletons-on-the-right restriction

froln the Gentzen calculi for Intuitionistic Logic, with the following rules for © :

FF :1I F, MI- ON
F _- :).,_ (F o) £. o3/_ o.'v ('_ F)

The O modality is unusual as it has some properties which are typically rq-like and others that are typically

O-like. The usual explanation of this, that rqA +---, ©,4 when the underlying Kripke relation R is flmctional,

does not hold in Lax Logic (where ,4 e---+ B stands for (AD B) A (B D A)).

Lax Logic also has a Natural Deduction formulation, which we shall use in the rest of this paper. Its

rules for O appear in Table 2. This formulation is equivalent under the Curry-Howard correspondence to the

typing rules for simply-typed A-calculus with a strong monad [9] an extension of Moggi's computational

A-calculus. The constraint conqmtations carried out in the examl)les of this paper use the computational

rules for the set monad, which are of course consistent with the general equations for a strong monad. \'_

stress this point because our m_,thod relies on the extraction of constraint information fl'om an abstract

proof; this extraction l)rocess involves the abstract (:omtmtational rules of tim (:alculus, tit(, specific rules of

the set monad and the higher-order logic rules for equivalence between propositions. From this viewpoint

it is no surprise that the way in which abstract formulas are proved determines the constraints that are

extracted fronl their prooN.

2 Abstract and concrete formulae

In [4] Fairtlough, Mendler and Cheng use Lax Logic to separate aspects of reasoning about hardware circuitry.

At the concrete level, aspects such as timing must be taken into account, whereas at the abstract level, only

a simplified "boolean" description of the behaviour of device.s suffices. For example, at tit(, abstract level, we

have "if inputs P and Q are tru(' (high) then output R is also tru(,". Correspondingly, at the concrete level.

we have "if inputs P and Q are both high at time t, and remain high until time t + 51, then output R goes

high no later than t + 52, and remains high so long as both P and Q remain high".

Henceforth, following [4], we work in higher-order logic (HeLl, and we will define a flmction ©v which

satisfies the Lax Logic rules for C,. This function is in fact the sel monad. Other mona(is undoubtedly also

have their uses within our framework, but we have not yet explored them in any detail. The literature on

combining monads, see for example [6], provides a rich source of ideas for extending our method.

Following HOL convention, we will write implication as _, and following the usage of the Isabelle theorem

prover, we will use P _ Q to denote the meta-proposition "Q can be deduced from P" (for which we also

use the conventional horizontal bar). Also following Isabelle, we use "!!" as a universal quantifier understood

at the meta-level.

2.1 Translating logic into the concrete�abstract format

Consider as an example a concrete formula such as P s, which means that signal P is high (true) at time s,

and likewise a second fornmla Q t. The corresponding abstract fornmlae are just P and Q, whose conjunction

is P A Q. The concrete fornmla expressing the conjuction is P F1 (2, defined by (P rq Q)(s, t) - P .s A Q t.

More typically we would w;mt to express a formula containing an arbitrary constraint, for example

Vs.s >_ 5 --4 P s. Here one could separate the concrete and abstract by writing {s Is _> 5} C_ {s[ P s}. We

define the concrete modality ©v by ©vPc - Vs.cs --+ P s: then ©v ot)eys the Lax Logic axioms for © given

earlier. We can now write this last constraint as ©vP(,_s.s _> 5).
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In both these expressions, i.e. (P M Q)(.s, t) and OvP(As..s > 5). the concrete part is the (last curried)

argmnent, and the abstract part is the rest.

Note, however, that in the latter examph_, the abstract part inchutes the Lax Logic modality ©v.

2.2 The translation used in the Isabelle/HOL implementation

As an alternative to the above, we tried replacing predicates by the corresponding sets (where the predicate

is the characteristic function of the set), replacing P s by s E P, amt so forth. After exl)t,riulenting with both

styles in Isabelle/HOL, we proceeded with the set-based imtfienmntation, since it renders the derivations of

the rules corrrspomling to (DR, O3i, OF, ©E and ©S particularly ti'anst)ar(,nt (these are given later, in
Table 2).

In the set-based notation, the definition of V1 becomes (.s, t) E (P M O) = .s E P A t E Q and the formula

Vs.s k 5 --4 .s'E P is rewritten as {,s ] .s' k 5} C @vP, where (' @ (DvP -= Vs.s E c --+ ._"E P. This last definition

may be tnorv simply written c E OvP -= c C_P.
Thus, in this formulation, the concrete formula is of the form c E P, where the abstract formula is

simply P. Henceforth in this paper, we will follow our Isabelle imt)lementation and write f()rmubm using the
set-based formulation rather the function-based one.

2.3 Calculating constraints

Intuitively, the formula s E P may be seen in the light that s is a concrete witness of the abstract formula

P: it gives an instance where P holds. Likewise, in the formula (s, t) E (P_Q), (s, t) gives an instance where
P r7 Q holds.

In reasoning about tinting of logical circuits, when P and Q are "prinfitiv(f' (eg gate inputs or outputs),

.s and t will be of type "time". Note, however, that the witnesses for "compound" (abstract) fornmlae, such

as P V1Q, will be of a different type. For exanq)le, (.% t) is of type "pair of times".

As noted above, the abstract fornmla PAQ corresponds to the concrete fornmla (.s', t) E (PMQ). Likewise,
the following two (Natural Deducti(m style) rules of inf(,rence (of which the secolld is expressed in two forms)

correspond.

P Q ,sEP tEQ fst zEP snd zEQ

P AQ (s,t) E (PnQ) z E (PnQ)

Note here that the rule calculates the witness for the conclusion from the witnesses for the l)r('mis(_s.

Alternatively, if the rule is used in a I)ackward proof, the second form calculates the required witnesses for

the two subgoals in terms of the required witness fur the conclusion.

Similarly, we can find a concrete equivalent for all the rules of Lax Logic. Table 1 gives many examples

for the intuitionistic logic rules. In some cases the rules are in the specific form used in the Isabelle/HOL
system. The third column gives the name of the rule (or of a close equivalent) in the implementation.

Note that, because a concrete formula specifies a witness, a simpler rule than Sumd_£p is available for

eliminating an abstraction [_]y., namely the inverse of the Sumd_Ip rule.

For the rules using the ©v operator, a selection of the rules is shown in Table 2. Note that the rules

labelled (©vR), (©vM), etc, are equivalent to the axioms (©R), (©3I), etc liste(t earlier, but they are in the

form of Natural Deduction inference rules. Note that the binary infix ot)erator ' (written op ' as a curried

2-argument function) is given by op ' fS - f'S - {fxl:r E S}.

2.4 The "Tiny" example

In [4] the following simple example is given. The concrete formulae (ext)ressed in terms of sets rather than

predicates) are

_'1 : Vs._s >_ 5 --+ s E Pla

_,__: Vsy.s _> 9y --+ s E P,(fy)

_,:_ : Vtsyl!l.2.(t >_ s + 35 A s E I)t!ll A .s' E P'2Y2) --_ t E Q(9(yl, y2))
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Abstract Concrete HOL ruh,

PAq .r E P(-?(_

P _ Q _ t? fst :r E P ==* snd :r E Q _ R
(AE) (ITE) a.ndd_Es

R R

(nl) andd_I
Aq (,_,t) e (PnO)

Q(_+ !br.:r ( P ==_ fx E _(_P_ I} I) ±mpd_Ip'
P--4Q fEPZQ

P--+ O P(-+ E) f ¢ P -q o P ¢ I>(Z E) impd_gp'
Q fp E Q

P-+Q Q-_ R fEP2Q gCQ-qR

P -+ R g o f 6 P _ li' impd_trans

Vy.Py (VE) f 6 _ !l.P!l Prodd_p
P.r fx E Px

!!x.Px !!x.fx ¢ Px

Vy.P_------_(VI) f 6 _ y.Pg Prodd_Ip

Px z 6 Pw

3y.Pg (3I) (w, z) C Uy.Py
Su.md_Ip

(w,z) 6lly.Py

3y.Py !!x.Px _ R !!ux.u 6 Px _ Jxu 6 R
(SE) Sumd_Ep

R fwz 6 R

Firstly, these are rewritten t(_ use Or:

b:,_ : {s _> 5} ¢ eV(ela)

_,_ : Vy.{s >_9y} e Ov(P2(fy))

From the above we can delete the concrete infi>rmation (i.e, that })eft)re E, and the quantified variabh,s

,sl and ,s.)) to get the following formulae which m-e abstract, but expressed in t.ernls of Lax Logic.

._2 :
_2

t?:} : VYlY2-PlYl A P'2Y2 --4. ©V(Q(.q(Yl, Y2)))

Where it is required to prow' 5mov(Qv), the abstract Lax Logic proof would run as follows.

':'3 t q Vy.Ov(P'2(fy)) (VE)

Vyl.tl2.Plyl A P'2!1"2 -+ Ov(Q(g(yl,y2))) (VE) Ov(Pla) Ov(P2(fb)) (ORS)

P,a A P.2(fb) --+ Ov(Q(g(a, fb))) Ov(Pla A P2(fb)) (evE)

ov(O(.q(a, fb))) (31)

Note that we use (ORS) and (O_,E) for rules which are equivalent to the corresponding axioms shown in

,_1.1.

To do the concrete constraint calculation, we would rewrite the fi>rmulae again using the logic of the

implementation such that the abstract formulae appear after the E, as follows (we also show an intermediate

step in the rewriting for _:_):
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Table2.Somemodalruleswith('Oll(T(_t(,equivalents

Al)stract Con('r(,te

P _:¢ P
--(OvR)
OrB {_'} e OvP

P _Q---QiOvF)ov S E P 3 Q
©vP--_ op ' f¢ ovPz OvQ

Ov(OvP)(ov3f) S E Ov(OvP)
OvP U ,5' ¢ OvP

OvP ovQ_o S _ SE OvP TE OvQ

P-', O`,Q O`,P(o`,E) f E PZO`,Q SE O`,P
o`,Q U(Y's) e 0,,(,2

HOL rule

Oall_unit _

Oall_F_image

Oall_M_Union

Oall_S_times

Oall_ext''

_'f : I._> s} E O_(P,.)
'¢,_ : Ay.I.s _> 9y} E Fly.ov(P_,(fy))

_"_ (intermediate form):

V!lly.2.A(sl, s.,).{t [ .s'l = ,s'2At _> ,si + 35} E PlY1 A 17"2!1'2-+ Ov(Q)(g(!ll, Y2)))

_,_ : Atj_._,,.A(._,.,.:).It I.,, = s..:A t _>.,., + aS} e V1y_._.P,y, A P_tj_ -, O_(Q(._(:U,,.U:)))

We would then repeat the proof, using rules on the right-han(t sides of Tables 1 and 2. In the iInt)lemen-

tation in Isabelle/HOL, we us(, the rules listed in place of the logic rules. The file Tiny2.ML gives a proof

of the goal p : [_] c.©v(Qv), for some appropriate p, which precisely nfimi(:s the abstract proof above, using

the correst)on(ling rules shown in the Tables. In Isabelle we can leave p unspecified it is a variabh, in the

goal and the proof process in Isabelle calculates it, 1)y instantiating the variat)le.

2.5 The "Latch" example

This example deals with a latch, with two inputs r,,, and s/,,, and two OUtl)Uts q,,,,t and _. The latch is

constructed using two cross-coupled NOR-gates, and has the "memory" t)roperty that,

- if one input is low and remains so, and

- the other input is high and goes low,

- then (so long as both inputs remain low) the outputs remain the same as they were when one input was

high.

This is possible because of the feedback fi'om each gate to the other in the design of the latch circuit, and

because the gates have a fnite delay.

The rules governing the latch, as relevant for this proof, are 01, 02 and O:_, and tim initial conditions are

Opl and Or2. The notation (s_, t_) E _rin D means that, for all times from s_, to t_, inclusive, the signal r/,_ is

high. It may be noted (from the descrit)tion above of the latch functionality) that the outputs shouhl remain

steady regardless of whether or when ri,_ goes low (in fact the outputs qo,t and _ should remain low and

high respectively).

0,,_ : (s_,t,) e Gr.,D
Op2 : Vt 2 Sa'("a;t) e _lSin_ 2

O, : Vst.(s,t) ¢ (]ri,,O -_ (s + d,,t + D,) ¢ Glqo_tD

(max.sl ._'._,+ d=,min tl t2 + D._,) e @-;-JD

1 is used for not, as in [4].
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0:_: v.,.t.(._,t) c (l_O _ (._.+ d,,t + p,) e _]qo,,,l)

We translate these into the f(wm which separates the abstract and concreto to get

o,;, . {(.,',,t) lt > .,,,} _ od].,',,,;
n_ : ,x(.,,t).(._+ d,,t + D,) _ (]r,,,D_ _]]%o,)
0._,: ;_((.,._.t_), (._,,,t:_)).(ma_.,,,.,_+ d_.n_int, _ + D._,)C _I]._,,Dn {Jlq,,,,DB _D
0:{: A(s,t).(s + d,,t + D,) _ (]-g,-_,cD-1 (]]qo,,,I)

The reasoning goes like this:

(a) Because ri,, is high (by 0vl), q_,,t is low (t)y 0i ).

(b) B(,cause .si, is low (by 0/2) and qout is low (I)y step (a) or (c)), _ is high (I)y 0,,).

((') Because qo,,t is high (t)y ste t) (b)), q,,a is low (by 0a).

(d) Now go back to step (b)

Because of the inertiality and delay of gates, this cyclic argument corresponds to the physical pro('ess

that keeps qo,t low i)ermanently. Note that it. requires that si, be low permanently, which is exi)ressed by

the concrete version of 0p.,.

The proof can be broken into three parts: step (a), steps (b) (c) (d), and the integration of these two

parts. '_,> first discuss steps (b) (c) (d).

The abstract result we prove is _]qo_D _ ov_]qo,t_. This result is trivial for example, use the axiom

QvR but we need a t)roof which expresses tile reasoning above. This is i)ecause the reasoning above gives

(loosely) "if qo,t is low on a certain interval, then it is low on another (slightly later) interval". Then,

ultimately, qo,t is low permanently.

We (:all that result latch_step. Here is the proof of the abstract result using the abstract connectives,

following the proof in [4. §3. equations (2) to (5)].

03

_0_7) --+_]qo,,t_ ov(]_D (OvF)
ov _11qo,_, )

Asslllne

0,,.2 G1qo,, )
(OvR)

o,, ov_l<,,D o_lqo,,,_ (o_s)

(]]s,.)/, _]lqo,,,) _ _]_.TD Ov(_]ls,.D A l]lqo,,tD) (OvV)

This tree proves _]qo,.O _ Ov_]qo.t), and (]lqo,,_ --+ ov(llq..,D follows trivially.

As in the "Tiny" exmnple, 1his proof (:an be translated to a proof of the concrete goal p E (]lq,,,,D

©v_l qout _ for some appropriate p, which is calculated in doing the Isabelle proof.

The file Memory2. MLgiw's a proof which precisely mimics the abstract proof above, using the (:orresp(md-

ing rules shown in Tables 1 and 2.

A rule is now needed to incorporate the repeated use of latch_step (which incorporates steps (b) to (d)

in the proof outline above). The inductive property of a set is defined in [4] thus:

Ind P-x E PZ (P_OvP) Z]OvP (1)

(where z is a specific value, given in [4]), and it is proved that Ind QP) holds for any P. It seems difficult

to describe the proof of this result as an abstract proof where the implementation calculates the constraint

automatically. The proof seems tailored towards the desired constraint much more than in the "Tiny"

example, or in the proof of Latch_step. Proofs of this result are given in Induction. ML. Later, in §2.6. we
describe a different way of using latch_step to prove the required result, first focussing only on the proof
at tile abstract level.

We can now use the in(tucti(m rule (]PD + ((]PD -+ Ov(]P_)) -+ Ov(]PD in the following proof.
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(_1 Opl

Qr,, 0 -4 (]7qo,,O _ri,,O (__+ E)
(latch_step)

QTqo.tO --+ Ov(]7%,,tl)

Ov(]lqo,,, D
( induction rule)

Again, we convert this proof using Tables 1 and 2, and the constraim is calculated for us: see Memory2. ML.

2.6 Alternative Approach

In part of the proof described above, we considered an abstract proof and performed the corresponding

concrete proof in lsabelle, letting Isabelle generate tit(, relevant constraint. However t he proof oft It(, induction

rule did not follow this pattern: rather, the proof seemed to be targeted at the desired constraint. \\), tried

to improve this by proving forwards flom the rule latch_step.

Firstly, two intervals which overlap can be combined to form a single imerval. We can express this as

:r 6 _P0 =* Y 6 _P_ =a S C_ _P0 where S = 0 if :r and 9 do not overlap, and S = {:r o 9} if they do. The

abstract version of the rule, called During overlap', is _P_ _ _P_ -_ ©v_P_.

The result latch_step expresses that from an interval in _]q,,,r D we deriw, a set of intervals in _]qo,t I).

Of this set of intervals, those that overlap the initial interval can I)e joined wilh it, giving a set of intervals

which are at least as long as the initial interval.

Here is the abstract version of this. Note that the assumption appears twice, which reflects the fact that

tit(, initial interval is used twice, once to generate a set of intervals, and once to join with each of them. The

result obtained, also _lqo,t D _ ©v_]qo,,f _, is called During_extend.

Assllllle

Gtq.,,,D

_lqo,,,_ -4 ovQlq,,., D
During_overlap'

Assuiile

(]lq.,,,_)
latch_step

ov(]lq,,,,, D (ORE)
(!1q,,,,,1)

This tree pr,,ves Q]qo,,_ _ OvQlqo,,,_, and Ql%,,,) _ ovQluo,,D follows t_i,,ian:,.

At this point we realized that we want our subset S of _]qo,t_ to be closed trader "shrinking fl'om the

right"; that is, if (a, b) E S and b_ <_ b then (a, b') E S. It is obvious that if (a, b) E _PO and b' < b then (a, b') E

(]PD, that is, if (a,b) • I]PD, then {(a,b')lb'<_ b} • ©v_PD, so this gives the resuh During shrink_right,

which in. abstractly, _P_ --+ ©v_P_. Using (©vC) we combine During_shrinkright and During_extend

to give During_extend_all.

By During_extend_all we have (a, b) 6 _]qo,t_ _ S C Glqo,.D where S contains intervals which extend

(a, b) to the right. We want to repeat this ad infinitum, forever accumulating larger intervals in S. To do this

we used Isabelle's inductive definition facility, as follows. The code shown defines rep h x as the smallest set

satisfying rules repI1 and repI2 and it is easily proved, as rep_fp, that rep E (P -q ©vP) _ (P E ©vP).

consts rep :: "('a => 'a set) => ('a => 'a set)"

inductive "rep h x"

intrs

repI1 "x : rep h x"

repI2 "[I z : h y ; y : rep h x [] ==> z : rep h x"

Finally, we combine rep_fp with During_extend_all to get latch_abs_rep. Note that. as abstract

results, latch_step, Duringextend, During_extend_all and latch_abs_rep are all the same, ie _ q_,,t _ --+

©v(]]qo,,_D. However they have different (and successively more complex) constraints.

Having obtained this resuh using (we thought) the correct logic, we then set out to check that the

constraint obtained was equivalent to the one forum previously in fact it turned out that latch_abs_rep

was a stronger resuh (had a we.aker constraint) than the earlier one.
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2.7' Comment on Proof Style

The file Memory. MLgives proofs of the "latch_stet)" and tit(, final result. The t)roofs of correst)onding results in

Memory2. MLand Memory3. MLare very much shorter. While the results proved in Memory2. MLand l_emory3. ML

contaill somewhat (tifferent ('onstraints from those l)rove(t in Memory. ML, it is not un(hlly (lit-ficult to show

the equivalence between t,henl (S(,(' ._3).

In fact we can attritmte our success in streamlining the l)roofs to the concept outlined in [4, p. 4], where

the authors say

Our contribution. Our al)t)roach invoh'es maintaining a close connection between abstraction (the (te-

ductive dimension) an(I constraints (the algorithmic dimension). The algorithmic aspect corresponds
to the calculation of constraints ....

In the proofs in Memory2. MLand Yiemory3. ML. we have first perfornwd a t)roof t)y looking only at tit(, abstract

parts of the terms. In fact w(' did this by working out the corresp(mding t)roof in Lax Logic as shown in the

proof trees above, and then translated this using Tables 1 and 2. Whih' we were concentrating soMy on the
abstract "side" of the formulae (on the right-hand sides of the '6' in tit(, rules in the second column of the

tallies), [sabelle was constructing (or calculating) the constraints ()n the left-hand sides of the '6'.

As can he seen in Memory2. MLand Memory3. ML, this made for quite short t)roofs. Only then did we turn

to the constraints, I)roving that they were equivalent to the desired constraints (that is, the constraints found

in the resuhs in Memory. ML). This whole process made for shorter proofs than those found in Memory. ML.

2.8 Different proofs

It was observed earlier that the latch_step result could be t)roved (abstractly) simply by apt)lying ©yR.

This would give, however, a different concrete result (i.e, with different tinting constraint term), which wouht

not have been what we wanted. For another exainple_ the important result rep_fp corresponds to the trivial

abstract result (P _ ©vP) --+ (P -+ OvP), but the trivial proof wouht give a different concrete result.

This illustrates that taking an automated proof of an abstract, result and ttlen converting it to a proof of

the concrete result will often not give the desired constraint. Likewise. we have noted that several distinct

concrete results, with different l)roofs, correspond to the same abstract result as does latchstep. It is

necessary to take into account not only whether the abstract result is provable but how it may be proven.
In this sense our abstract rules are intended to be used more like tactics than theorems.

2.9 The "Factorial" example

In [7], Mendler gives some practical examples. Vv_ consider his "Factorial" example, where tm defines an

implementation of the factorial in terms of implementations of an "increment" function and of multiplication,

both of which can handle integers only up to a certain size.

In this example, the factorial function is implemented using the usual recursive definition, but using

functions i (for incrementing) and nt (for multiplication), which implement the mathematical successor and
multiplication flmctions subject to constraints.

The results are in the file Factorial.ML, with definitions in the file Factorial.thy. The flmctions
Mendler used are as follows:

tact, Suc and * are the tru(, factorial, successor and multiplication functions.

i and m are implementations of the successor (or increment) and multiplication flmctions, which are
correct up to constraints

cnt is an imI)lemeIltation of the successor function in effect, cnt 7_ = i '_ 1

cnt_0 "cnt i m 0 = Suc 0"

cnt_Suc "cnt i m (Suc n) = i (cnt ± m n)"

fac is an implementati()n of the factorial function, using cnt

fac_0 "fac i m 0 = 1"

fac_Suc "fac i m (Suc n) = m (cnt i m n) (fac i m n)"
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Note that cnt an(t fac are defined in terms of ± and m, whi(:h is a (letail necessary in the source c()(te

but ()mitred from the Figures 4-7 and 4-8 in [7]. We also note that this imI)lenmntation assunms that a giv(m

argmnent can 1)e correctly identified as being equal to Sucn there is no constraint for the ac(:uracy of this

step.

Figure 4-7 in [7] gives an inductive proof that the function cnt implements the successor function, bas(_d

on a premise that i also implements the successor flmetion. V_'e folh)wed this proof, generally substituting

rules on the right-hand sides of Tal)les 1 and 2 for those on the left-hand sides. As file ])roof in Figure 4-7 is

by induction on the natural numbers, we show nat_induct, the (:on(:rete equivahmt of the induction axiom.

P O Vt_.P 'l_ -+ P(Suc'r_) a C P O f c r-]n.P l_ -+ P(Suc ,)

Vn.P n natJvc (1 f E [_ ,.P ,

where nat_zvc is defined t)y

nat_rec f g 0 = f

nalz_rec f g (Suc n) = g n (nat_tee f g n)

Recall that previously, where the al)stract expression was a boolean condition, the constraint was that the

condition would hold only at certain times. Therefore the concrete quantity corresponding to the abstract

condition was the set of times at which the condition would hoht.

Here the constraints ar(, themselves simply boolean conditions. To use the same concrete rules as t)revi -

ously, we use a fimction _ of tyl)e bool -_ unit set, where t(true) = {()} and _(false) = { }. (unit is th(' t.Vl)e

with just one value. '()', and so unit set has two values, {()} and {}).

We first proved a goal ()f the form

f _ RT_(ov(,.(i7_: Suc_,)))

?9 e F]7_(Ov(,(cnt i m ,. = Suc .)))

where ?9 denotes a variable which would (usually) become instantiated during the course of the proof.

Observe that ?g could always be instantiated by the function g n = { }, but the proof process gives us the

"largest" possible g (in terms of f). That is, assuming f n is {()} whelmver i n = Sue 7_ hohis, then f n is

{()} whenever it follows (according to the proof in Figure 4-7)) that cnt i m 7t = Suc n. The Isal)elle proof

instantiates 9 to nat_rec{()}(Anx. U((ly.f(Suc n))'x)) This gave the result deriv2.

From here we look at the proof in Figure 4-8 of [7], and attempt to t)rove a goal of the form

f c n..(ov(,.(i. = Suc7_.))).q_ _ 7_-._,.(ov(,_(.,.,..2= -_*-._,)))
?h _ FI ,(ov(_(fac i ,_. :/act .)))

The proof in Figure 4-8 is not (tuite complete for our purpose, as it shows only a proof of the premises of

the main inductive step. But using Figure 4-8 of [7] plus that inductive ste t) we obtain the result deriv4 in

Facl;orial. ML.

We then applied these results, choosing, as constraints for the functions i and m, the conditions that the

result fits into a word length of w |)its. So our constraint for i n = Sucn is S'uc n < 2 ":, and our constraint

for m 'hi n_ = nl * n., is 7tl * n2 < 2"'. (These constraints are expressed in the flmctions I and M, defined by

I_def and bl_def).

We then simplified the constraint of deriv4. This involved a few theorems which may be generally useflfl

in dealing with the unit set tyt)e, and some theorems specific to the constraint being simplified. Finall.v we

obtained the theorem deriv4' 1, which gives the constraint (n = 0 l fact n < T"). Expanding the definitions

of the connectives Or, [7, t and the definitions of I and M, and al)I)lying a little automatic simt)lifi('ation , w(,

obtain a correctness theorem of the form

Vn. Sucn<2"-+iT_=Sucn Vnl,n2.'nl*'r_.2<2'"-emnln.):nl*n.,

Vn.(n = 0 --+ Sac i m 0 = fact O) A (fact n < 2"' --_ fac i m n = fact n)

In fact we weren't ext)ecting the disjunct n = 0 in the constraint of deriv4'l, but it is clear that it

should be there. The reason is that fac i m 0 can be evaluated without using the inq)lementation of i or

m it is defined as 1. (An alternative definition of fac might have t)een fac i m 0 -- i 0). We mention this

only 1)ecause it is reassuring to get an unexpected result which, on reflection, proves correct!
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3 Dealing with the resulting constraints

As mentioned, this approach has the significant advantage that constraints can be calculated automatically.

Typically at each ste t) of the proof, the constraint attached to the current proof becomes larger and larger.

It ma.v therefore require significant effort to simplfy the constraint to a point where it is nseflll. For example,

the constraint appearing in deriv4 (before substituting the actual constraints on i and m (increment and

multiplication) for f and .q) is

()i (a,,,,.. () I(a,,z. O((a:H(s,-. ,,))' )),, n .q(s.,,. ,,.)(/act ,,)n )

In the case of tim "Latch'" (_Xaml)le, l)art of the c(mstraint was the expression

(Vtl.t + Dl < tl --+ (_s.2.s + dl <_ .'_2A.";2 _ tIA

(_t.c.tl < t'2 A (3_l.s.2 = nraxa (s + dl) + d.2 + dl A

(3b.t., = nfinb tl + D.2 + Dt A s < a A a __ b)))))

which can be simplified to

2.dl + (s + d'2) < t+D1A (0 < D., 10 < DI)

We felt that the form of the constraint produced would be likely to recur in other cases in connection

with timing constraints for hardware, an(t so we developed some conversions to assist the simplification.

This sin_plifieation requires rendering all five of the quantifiers. We produced four conversions which

in various ways remove quantifi('rs automatically. All five quantifiers in this example were removed by the

conversions we produced, which suggests that they may be of some general use.

Tile actual simplification, wfl h and without use of the conversions, is in the file Memory2.ML.

3.1 Conversions

Tile concept of a "conversion" is found in the HOL theorem prover, see [5, Chapter 13], where a conversion

is a flmetion of type term -> thin, which takes a term t to a theorem t = t' (which can be used to rewrite t
to t'). A conve, rsional is a flmction which acts on or modifies conversions. For example, if cony t is t = t' (to

rewrite t to t'), and cony _ t' is t' = t" (to rewrite t' to t") then (cony THENC cont_) t is t = t" (to rewrite t to

t"). The conversional SUB_CON7 applies a conversion to tile immediate subterms of a term. These conversionals

may be used to program various more complex strategies for rewriting (where possible) subterms of a term,

as described in [5, _13.2].
In HOL, a conversion cony that "fails", in the sense that cony t finds no t' such that t = t _, can be

programmed either to return t = t or to raise an exception (and there are functions to change one sort of
conversion to the other). We implemented this concept slightly differently. Our conversion has type cterm

-> thm option (a cterm is a term :'certified" to be type-correct). Given t, if an equivalent but different

expression t' is not f(mnd, then (normally) NONE is returned (we say the conversion "fails") though some

conversions will return t = t (we say they "succeed trivially")

The structure Cony (file conv.ML) contains many flmctions relating to com,ersions. (All have close coun-

tert)arts in HOL [5, Chapter 13]). For example, the following three flmctions apply el and/or c2, but with

different results depending on their success or failure.

c_ THENC c2 applies c'_ and then c2, failing if either cz or c2 fails,

cl BOTHC c2 behax'es jusl as c2 if et fails, but if cl succeeds it tries c2 on the result of el; it fails (/nly if

both cl and c2 fail,

cl ORELSEC ('_ tries el, and tries c2 if cl fails.

For a single conversion c.

TRY_CONV c t tries c t, succe(,ding with t = t (succeeding trivially) if c t fails

REPEhT1C c repeats c until it fails, succeeding only if e succeeds at least once

REPEATC c tries c repeatedly until it fails, but always itself suceeads

Clearly a conversion which can succeed trivially should not be REPEATC-ed, or an infinite loop may result.
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For a conversion c, where t is t, t2, COMB_CONV c t applies (' t() t_ an(l to t=,; where t is lx.t', ABS_CONV

c t al)plies c to t r.

With these building bh)cks, we can define TgPDN CONV and BOTUP CONV; TOPDN CONV c t at)plies c to all

subt(,rnls of t, without ret)etition, in top-down order, and likewise BOTUP CONV c t, in t)ottom-u l) order.

Depending on c, either TOPDN_CONV (REPEAT1C c) or REPEAT1C (TOPDN_CDNV (REPEAT1C c)) may t)e

conversions which achieve more (but are slow(,r) than TOPDN_CONV c.

The flmcti()ns CONV_GOAL_TAC : conv -> int -> tactic and C0NV_GOALS_TAC : conv -> tactic

turn a conversi(m into tactics which will alter a given subgoal, or all subgoats resl)ectively. Th(, fmn'tion

CONV_RULE : cony -> thin -> thin option uses a conversion to turn a t]morem into a new (nw.

More such functions and conversionals are available in the ill(, cony. NL.

3.2 Ex_eq_conv

Given a term of the fl)rm 3x y z. P x y z A y = f x z A Q x y z clearly the only possible solution for y is

y = f x z. Therefi)re the term is equivalent to 3x z. P x (f x z) z A Q x (f x z) z.

The conversion ex_eq conv' actually converts the original term to 3x y z. P x (f x z) z A f x z =

f x z A Q x (f J: z) z (i.e, convening y in the body of the original to f x z); Simp tac will simplify this to

3.rz. Pa'(f xz) zAQx(f xz)z.

Given a term such as 3x. P x A (3y. x = _ + y) A Q x we can rewrite it to move existential quantifiers

outwards, to make ex eq_conv' applicable. (Note that default simt)lifieation will do the ot)t)osite , i.e. move

quantifiers inwards where possible).

3.3 Exmmno_conv

Given a term of the form 3x. P x x, where the notation P X x implies that x appears in P in two (or more)

places, and where P is monotonic in both (or all) of those arguments, then the term _xl .r.,. P .rj x.) is

equivalent. This is because, given any solution xj, x_ for the latter, x = nlax(xl, :r2) will suffice as a solution
for the former.

The conversion ex mono_conv' performs this conversion. The resulting term may well not seem '_simt)ler"

than the original, but it can allow further simplification. For examt)le , 3x. a < x,bAt < x (:an be converted to

3x_ x2. a < xl * b A c < x2, and thence (by default Isabelle simplification) to (3xl. _ < Xl * b)A (3x2. c _< x2 );

then the second conjunct can be simplified away.

3.4 Ex_rel_conv

The conversion ex_rel_conv' converts a term such as 3x y. P y A b < x - y to 3x y. P y A True. It depends

on establishing that the conjunct b < x - y can be solved for x.

The result in the example can be simplified to 3y. P y. It works where there are several existential

quantifiers together (as the example given above) and multiple conjuncts. As in the case of ex eq_conv',

it may also be usefill to frst rewrite so as to gather the existential quantifiers together outside a set of

conjuncts.

3.5 Ex_rm_conv

The conversion ex_rm_conv is used to convert a term such as 3y. x _< y A P y, where P is antitonic in y, to

P x. The reasoning behind this is that y = x is the unique minimum possible solution to the first conjunct

for y, and sin(:(, P is antitonic in y, P x holds if and only if P y holds for some y such that x _< y.

4 Conclusion

We have shown how the use of Lax Logie to handle constraints and of the Isabelle theorem t)rover to perform

proofs can achieve the "clean yet sound sei)aration" ([4, §4]) of reasoning logically about the prot)erties
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which "emghl" to hold and calcul;_ting (in tile theorenl prover) the constraints under whi('h those properties

actually do hold.

We have shown also described a re|tuber of converskms suitable for simplifying these automatically gem

crated constraims in the case of lhe thning constraints for hardware. Although the aulomatically generatod

constraints can be complex, The conversions we have described are powerful tools for simpli[ving them, and

we suggest that the.v would tJe grnerally useflfi for constraints calculated using our method.

Our approach is motivated by practical considerations and does not aim for comi)lete generality. An

ahernative and more general aplm)ach would be to apply Norrish's work on implementing Cooper's algorithm

in HOL [10]. This algorithm is , decision procedurr for Pr(?sburger Arithmetic and n,li(,s on a mrthod of

transforming a formula into a quantifier-flre normal form; since our focus in constraint analysis is not mereqy

on proving constraints (that is, on showing they are re(hmdant,) but more generally in simpli/yin 9 them, it

is the construction of normal forms that interests us. In the above examtIle of the latch, the final form of the

constraint is indt'ed quantifirr-frr_', and considerably shorter than the constraint initially generated. Howevrr.

there art instances where quantilie_r elimination would greatly increase the size' of a constraint, and in those

cases a more compact formulation involving quantifiers might be more intelligible and therefore preferable.

Ore" constraint-based approach to machine-assisted reasoning would provide a wealth of examples that

could be used to compm'(_ these two approaches.
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Abstract. Work with Pitts and others has led to FM (Fraenkel-Mostowski) theory, a f'r(_sh under-

standing of modelling syntax in the presence of variable binding. We discuss the design anti other

issues encountered imt)lementing these techniques in tim Ine(:hanise(t th(,orenl-t)rover Isabelle.

1 Introduction

It is easy to de('lare a nai've datatyt)e of terms of some language, for examt)le the mltyt)ed )_-calculus.

.1 = ll.\'.Var of Nat + App ofX x X + Lain of Nat x X (1)

where Nat is the natural numbers. Problems famously arise defining program transformations in tt1(, t)resenc(_

of variable bin(ling. For example a substitution flmction [t/a]_ on .1 above should avoid "accidental variable

capture" in [Var(1)/Var(0)].s for .s' = Lain(l, Var(0)). Thus we rename 1 in s to some i # 0, 1, but then Var(i)

is no longer syntactically a subternl of .s and we have made an arbitrary choice about the value of i. The

former t)oint (:auses difficulty with structural induction, the latter because we may have to formally prove
irrelevance of the choice lnade. 1

All this we could do without, especially in the unforgiving structure of a ten,tinter proof assistant such

as Isabelle, HOL98, or COQ, or even t)rogranuning in some language with datatypes. There is much research

in this area, for example explicit sul)stitutions ([2]), de Bruijn indices ([3]), and HOAS ([111, [41, [9]).

FM theories are another at)preach with a pleasingly elementary nlathematical f(mndation. See [7] (my

thesis), [5] and [6] (set theory), [8] (higher-order logic), [131 (t)rogramming languages), [12] (first-order logic).

The label "Fraenkel-Mostowski" honours the creators of set theories designed to prove the in(t(_l)endence of

the axiom of choice, see [15]: a very special Fraenkel-Mostowski set theory was the first FM theory in the

sense of this pat)er to be created.

In this paper we discuss principles of formally implementing a theory of FM syntax, based on experience

doing so in Isabelle [14].

The first design decision of the implementation is the choice of system, Isabelle. We chose Isabelle

for its t)aradigm of constructing arbitrary useable theories (Isabelle/Pure/FOL, Isabelle/Pure/HOL, Is-

abelle/Pure/CCL ..... see [14]) in a fixed weak meta-language Isabelle/Pure. This recta-language is a very

weak higher-order logic (HOL) containing little more than modus pon(,ns, t)ut to which we may add new

types, constants of those types, and axioms on those constants. Thus we may axiomatis(_ a theory in Is-

abelle/Pure and then work inside that theory. This is good for prototyping a new foundational system such
as FM.

2 FM

*FM' may differ depending on whether we do computation or logic. For example contpare the typed A-calculus

(a theory of computable fimetions) to higher-order logic (a theory of all fllnctions). This paper is about logic,

FM in computation (programming languages, unification) is under development, see [13, 1].

* The author gratefully acknowledges the funding of UK EPSRC grant GR/R07615 and thanks Andrew Pitts for

his suggestions for improvements.

' Cf. the work of McKinna and Pollack in the LEG() system, e.g. [10]. FM is quite different but sometimes echoes
this work.
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'FM' is a set of techniques for n-equivalenre with inductive definitions and not a particular theory. We

shall now present KXl in the SI.VIu of _/ higher-order Iogic. This is not aIl axionlatic presentation (st,(' [8]) but

a 'skett'b of salient featmes, in t[le style of higher-order logi(:'. First, three preliminary remarks:

1 (Types). We shall write/yl)C mmotations in two styles: :r: o and x" both mean ".r of tyl)(' n". ©

2 (HOE sets}. Higher-order log;k! ]las a IlOt[()ll of set, "where 'o-sets' is t)redicates n --->Bool also written

"Pin). \Ve borrow set not alion, fl,r example writing .r E X for '(X .r)', X C }" for 'V:r. (X .r) _ ()" x)', an(t
0 for Xx.± and n for Aa"_.T. 0

3 (Meaning of infinite}. In I:M theories not all lypes can be well-ordered (bijected with an ordinal, see

[8, Lemma 4.1(}(5)]). Therefore. a reading of "X is infinite' as X _ N is SllSl)et't. In FM we use "X _ "PZi,,(X)'

where 'Pfi,(X) is the inductively defined type of tinite Slit)sets of X. ©

An FM theor.v has:

4 (Atoms). An infinite type of atoms o. b. c,... : A to model variable names. R)r examph' in an inductively

defined t,vl)e of expressions for tyl)es,

w ..-"- TypeVar of A + Product of W x _r + DisjSum of _r x _,w (2)

tyt)e vm'iables are represente(l as TypeVar(o) for a : A.

5 (Transposition). There is a (t)olymort)hi(:ally indexed (:lass of) c(mstant(s)

<>

Tran : A _ A -* cr _ a, (3)

read "transposition". Write (Tran a b f) as (a b).x. The intuitive meaning of (a b).x is as transposing a

and b in x. For examI)le if x = <_, b> th(m (a b).x should equal <b, o>. This is made fl)rmal |iv the following

equational axioms whi(:h Tran must satisfy, and equivariance below:

(a a)._ : X

(a b).(a b).x = x

(, _,).(cd).:r = (_ d). ((_ d).a (,, d).b) x

(a b).n '< = i f(n = a,b, i f(n = b,a,n))

(4)

(5)

(6)

(7)

where if(test, tl, t2) is Isat)elle-like notation meaning "if h_st then tl else t.ff.

6 (Equivariance). For a term f with free variables Xl ..... x,,,

<>

(, b).f(xl,...,:r,) = .f((o b).:rl ..... (a b).x,). (s)

In the case that f has no free variables we have the special case that (a b).f = f.

We say the language is equivariant. An equivariant element x is one such that for all a, b, (a b).x = x.

From (8) for 1_= 0 it follows that (:losed terms denote equivariant elements. <>

Definition 7 (Smallness, I/I). Write T)fi,(A) for the HOL set o/finite subsets of A. Say a .set X C A i,s

cofinite when its cornplemev.t A \ X is finite. Write _')cofin (A) for the HOL ,set of cofinite subsets of A. For

P:A _ Bool write 'NP' or 'Ill.. P(a) ' for P E TSof._(A).

A is infinite from remark 4 so we can read Ha. P(a) as "for all but finitely many a : A, P(a)'. or more
lo()selv as "for most a : A, P(a)". We may (:all finite P : A --+ Bool small an(t their c()mt)lements (:()finite

sets, large. Thus P is large precisely when Ha. P(a), and small t)re(qsely when [/la. _P(a).

Definition 8. Define a#x ,l_f i Eb. (b a).x = x) and read this as "a is not 'in' :r" or "a is apart firm .r".

The intuition is th,at, since transposition transposes b for a in :r and siuce b is fl'e,sh, if (b a).x = x then

certainly a is not in :r.



62 Xlurdoch.1.Gabl)ay

Wehaveanaxiomstatingthat ',nost'atomsarenot 'in' x : a:

H(I. (1#21:. (Small)

Expan(ting definition S this becomes IAa. Hb. (a b).x = :r. Write

Supp(x) d,'f {(t: /_X -n(l#j" }

Then (Small) is equivalent to

Supp(x) E _/.,(:r)

and we can also read (Small) as "x has finite support".

9 (Some observations). 'In' does not correspon(1 to (HOL-)set m(,mbershiI). For examph_,

(9)

n CL=A\{7_} but l_ C Supp(L).

We might think of Supp(x) as an object-level notion of those atoms occurring in some recta-level term which
x denotes.

Datatypes of syntax T certainly satisfy (9). Terms t : T are finite 2 so mention only finitely many atoms,
and cofiIfitely many a : A satisfy a#t. O

10 (H excellent properties). Higher types such as A --4 Bool also satisfy (9). Observe that (using some
sets notation)

P:A- Boos= I

It h)llows fl'om (8) that

(. b)./, = {(, b)., I •

We can verify by calculation that (a b).P = P if and only if a, b C P or a, b _' P. When we combine this with
(9) it follows that either 'most' atoms are in P or most are not in P:

_(A) u _¢.,(A) + _,o/_,,(A). (10)

We can rewrite this as _llla. P(a) ¢*, Ha. =P(a). Now the fifll set Ax.T = A C_ A is clearly cotinit(,

so Ha. T = T. Combining this with other properties of cofinite and finite sets we obtain the algebraic
(:ommutativity l)roperties:

Illa. P(a) A Via. Q(a) ¢=:> Ha. P(a) A Q(a)

Ilia. P(a) v Ilia. Q(r_) ¢=:,, Ha. P(a) v Q(a)

H.. _p(_) _ -44,,. P(.)

tam T

-,Ha. l

(Ha. P(a)) A Q _ ida. (P(a) A Q),

(11)

(12)

(13)

(14)

(15)

(16)

that is, H distributes over A, V, --+, -,, T and /. These strong t)rol)erties make H convenient to work with

in a mechanised context. The)' also place H in an interestingly 'in between' V and 3, the equations being
informally:

_V-- = 3 _H-- = I/1 -_3_ = V.

<>

2 Extending FM to infinitary syntax is possible and interesting.
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3 t_-equivalence on a simple datatype

11. Tran is how an FM theory wnames object-level variables. It interacts with object-level syntax better

than atom-substitution [b/a]. For example [h/a] applied to t = Lam(a).Lam(b).,,(b) raises all the usual
problems with capture avoidance, whereas (b a).t = Lam(a).Lam(b).b(a) is o-(,quivalem to l itself. Similarly.

(b o).(A \ {a}) = A \ {b} wheras [t,/aJ(A \ {,}) = A \ {¢,}. O

We can define an o-equivalence relation =_ by cases on inductive tyl)eS. For example:

Definition 12.

L ,_r TyVarofA+ TyProdofL x L+ TyAbs of AxL

,lot TyVar(a) =_ TyVar{b) _ a b

TyProd(tj.t.e) =,_ TyProd(t'l,t'.,) +-ti =_ t'_ A t.2 =,, iSe

TyAbs(a, t) =_ TyAbs(a', t') +-- tab. (b a).t =_, (b ,').l'

Here L is intended to be a type of expressions for types. The definition of L above might be written in more

familiar style as

l ::= TyVar(a) I TyProd(/, l) {TyAbs(a, l) a : A,

and sugared to (writing a for l a Lvpe and <_for, : A a type variable)

a ::= a j cr x cf I A_.cr.

We shall use L, =_, and =(_' defined below in (18), as a running el)jeer of study in the rest of this paper. In

the rest of this section and elsewhew the proofs given are semi-formal accounts of th(, formal proofs as they

might be conducted in Isahelle.

This machinery allows us to quite easily prove some nice properties for =(_, for (,xample transitivity:

Lemma 13. =. is transitiw_'.

Proof. By indut:tion on syntax using hyt)othesis

def

O(tj) _ Vt.,,ta. (tl =_,t._,At._=_ ta)+tl =_ t:_.

The significant case is of t) = TyAbs(al,t'_). So suppose O(t'_), tl =_) t:,, and t2 =_ t3. Then t2 =

TyAbs(a2, t') and ta = TyAbs(a3, tl_), and

(_,. (t,,,,).t', =_ (b _,_).t')/, (_t,. (b <,).t.', =_, (t, <,).&).

We now equationally apply (11) to deduce

t4t,. (b a_).t; =o (b a_).t" =o (t, <,)4- (t7)

Now we assumed O(t'1), not O((b a_).t'_). But we (:an apply equivariance (8) to o(x) to deduce O(t'2) ¢=e;
o((b at).t' 1), which allows us to complete the proof. []

We can also define a more t)aditional c_-e(tuivalence =_':

TyVar(a) --:_,' TyVar(b)

TyProd (tl. t2) =(,' TyProd(t'l, t.',)

TyAbs(a, ti =_' TyAbs(a', t')

in terms of an inductively defined names-of flmction n(t)

n (TyVar (a))

n(TyProd(tl, t2))

n(TyAbs(a, t))

+--a=b

+-- t) =_' t'_ A t2 =_' t"

<- 3b.[bl.J.t =_' [_ld]t'A
z, ¢ n(_) u T_(t') v {., .'}

= {.}
= _(tl) u 7t(t.,)

= {_,}u.(t)

is)

19)
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and all inductively defin(,d atonl-for-atonl substitution flm(:tion

[b/,]TyVar(a)

[b/a]TyVar(,)

[b/a] TyProd(t t, t_ )

[b/a]Tyibs(n, t)

= TyVar (b)

= TyVar(7_) n # a

= TyProd([b/a]tl, [b/o]t2)

= Tyhbs([b/@t, Ib/,]t).

(20)

_b. [t,/,]t = (b ,).t

_b. [t,/,].t =_' [t,/,'/ A t,¢ ,(t) u ,,(t')u {,.,'} .=_
_b. [t_/,)=.' [t,/,']r.

PTvof (of (21)). We can use structural induction for a fixed with hypothesis 0

def

o(t) ¢=_ _b. [blo]t = (b .).t.

Suppose t = TyProd(t_, t2). By definition from (20), [b/a]TyProd(tl, t,2) = TyProd([b/a]t,. [b/a]t2), and
by equivariance (8), (b a).TyProd(tl, t2) = TyProd((b a).tl, (b (t).t2). By hyt)othesis wc know

(l/lb. [b/a]tl = (b a).tl) A (_b. [blair2 = (b a).t2).

By (11) and applying the equalities under TyProd we obtain tile result.

The cases of TyVar and TyAbs are no different. Each time, equivarian('e of (b _t) as illustrated in (8)
alh)ws us to push transposition down through _he structure of a term and replicate the inductive behaviour
of [b/a]. This is a general pattern. []

Note fi'om this t)roof how transposition with equivariance has provided a 'general axiomatic theory of (purely
inductive) renaming'.

Proof (of (22)). Tile t)roof of (22) is rather more involved. It is best to work from the following lemmas:

,,(t) E P/,.(A)

XcT'si.(A ) _ (bCX_b#X)

b __n(t) ¢==_ b#t

b#xAb#f _ b#f(x)

b#(f(x)) A b#f A f injective _ b#x

b#c c a closed term

b#P A--'8°°l A P(b) _ L,lb. P(b)

l,lb. P(b) _ 3b. b#P A P(b)

_lb. P(b) _ Vb. b#P _ P(b)

3b. b#x

The proof now proceeds as follows. We must prove

Write P

to

(23)

(24)

(25)

(26)

(27)

(2s)

(29)

(3o)

(31)

(32)

3b. [b/,]t =.' [b/,']t'A t,¢ ,,(t) u,,(t') u {_,a'} ,==, _b. [b/,]t =o' [b/,']t'.

A(,. ,/, t, t'.M).[b/a]t =a' [b/a']t' and ,is,, (25) (proved from (23) and (24)) and to rowrite this

3b. b#t, t', a, a' A P(t, t', a, (/, b) _ [4b. P(t, t', a, a', b),

(21)

(22)

tt(t) and [b/a]t ar(, simple and make no allowance for fi(,c variables or ('ai)ture-avoi(lan(:e. but th(w su_('o for
ollr Ii(_eds.

Sul)pose w(, want to prove tl =a t2 _-_ tl =a' t2. A t)leasing and clean m(,thod would b(, t() t)rov('
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whereb#:rl .... , :r, denotes th(, ('oujun('tion A, b_xi.

Left-right implication. W(' mu_t ])r()ve

_b. b#t. t', a, a' A P(t, t', a, a', b) _ l_b. P(t, t'. a, a', b).

"_% eliminate the existential quantifier and obtain

b#t.t'.a,a'AP(t,t',a,a',b) _ lab. P(t,t',a.a',b). (33)

We resolve against (29) to obtain

b#t,t'.a.(_' A P(t,t',a,a')(b) _ b#P(ht',a,a') A P(t,t',a,a')(b).

which simplifies to b#t, t'. a, c_' ==:> b#P(t, t', a, a'). We z'epeat('dly resolve against (26) to reduce to b#P,

and finish this off with (28).

Right-to-left implication. We IIIIlSl prove

tdb. P(t, t', a, a', b) _ _b. b#t. t'. a. o' A P(I, t', ,, a', b).

Now here we have a prol)lem. Clearly we would like t.o eliminate [/I using (30) 1o ol)tain

b#P(t,t',a,a') AP(t,t',a,a',b) ==_ 3b. b#t,t'.a,a' AP(t,t',a.a',b),

identify the b in the (:onclusi(m with the b in the hypotheses, an(t simplify. But we obtain

b#P(t,t',a,u') _ b#t,t',a.a'.

This implication does not follow for general P, nor even for our i)articular P: if P were injective we ('ouht

apply (27) repeatedly, but it is a predicate mapping into Boo]. an(l is not injective.

However we can use (32) to introduce into the conWxt some b fiesh for any x, so instantiate x to the
3-tuple

<n(t), n(t'), {o, a'}>. (34)

Now we can apply (27) repeatedly to obtain

b#t, t', ,, ,' A _b. P(t, t', a, rt', b) _ Sb. b#t, t', (_.a' A P(t, t', a, a'. b).

(Here there is also a hypothesis b#Axl, x.z, x3.<xl ,x2, x3> but this gives us no information since we get it

for free from (28), so we drop it.) This simplifies to

b#t., t', a, a' A I/lb. P(t, t', a, a', b) _ P(t, t', a. a'. b).

But now we have another problem. If we eliminate Ia using (31)) we obtain for a variable symbol b'.

b#t, t', a, a' A b'#P(t, t', a, a') A P(t, t', a, #, b') ==* P(t, t'. a, a', b).

We need a different elimination rule for [Awhich does not introduce a new variable into the context, and this

is provided by (31), with which we can finish off the proof. []

4 Morals from the proofs

In the t)revious section we have seen the beginnings of the automated theory of (a b), #, introducing a fresh

name, an(t [d. We now bring it out explicitly.

14 (Theory of transposition). Given a conclusion of the form s = (a b).t, use (8) to simplify the RHS

bv drawing transposition down to the variables on the right hand side. Similarly for oth(,r binary t)redicates
such as _ or also #. So for example

s :: (a b).<x,y> simplifies to s = <(a b).a',(o b).y>.

This algorithm can fail. for exanq)le on the goal (a b).<x, y> = (a b).<.r, Y>- Call it push. because it "trashes'

transposition into the structure of the term on the right of an equality. In an implementation push wouM

denote a tactic. We shall comim_e to give such names to algorithms which wouhl denote tactics. <)
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15 (Theory of #). Given a goal of tilt, form a#t repeatedly apl)ly (26) and (28) to simplify it to componen!

1)arts. So fin" (,xamt)h,

-#<x, y>

reduces to a#:r A ,#y A ,#Ax. y.<x, y>. and then to _#x A a#!l. This algorithm can also fifil, for examph,

in a#_l <T, e> we should peribrm fl-reduction first, otherwise we finish up with a#a, which is Ulltruo. Call

the algorithm split#. 0

Inductive proof on inductive types can, with proper handling and properly coordinated aulomated pro-

cedures, be made to produce very uniform proof-obligations which are amenable to this kind of lreatment.

with only slightly more sophisticated algorilhms.

16 (Introducing a fresh name). (32) allows us to introduce a new variable b into the contexl, fl'esh fin.

.r for any x: given the proof-stat(,

V:rl ..... :r,,. Co_,ts(.rt,..., :r,,) _ Co, cl(:,'l .... ,.r,,)

We Call reduce io

Virl,..., d'n, [). Colld.q(Jrl ..... 21"n ) a b#t(d7 1 ..... J'n, D) _ CoTic[(:l: I ..... :1:,1 )

for any t.

We can now take t to be the n-tuple <Supp(xl),..., Supp(,,,)>. Rel)eated applications of (27) reduce

b#t to Ai b#Supp(xi). It is a lemma tha! b#Supp(,t) ¢==> b#'u, so we obtain

gxl,...,x,,,b. C(mds(xj .... ,x,,) A A b#xi _ Concl(xl ..... x,,).

i

hi other words, "we can always invent a fresh b". We apt)lied this technique ad-hoc in (34). (;all the algorithm

newname. <>

17 (Theory of I/l). The treatment of I/1 is nlore complex. There are two broad styles of reasoning on I/I,

equational reasoning using for exalnple properties such as (11) and (16), and directed reasoning using intro-

and elim- rules such as (29), (30), and (31). Both are useflfl. For example equations in (17), and intro- and

elim- rules in the proof of (22).

A fllrther complication of the treatment of intro- and elim- rules is that [/] seenls to have two pairs of

thorn. In fltll, they are

3b. A/,(t))) eta)) (33)
[�lb. P(b) _ (3b. b#P A P(b)) (36)

Vb. (b#P A-+B°°_ --+ P(b)) _ t,'lb. P(b) (37)

Mb. P(b) ==a (Vb. b#P _ P(b)). (38)

For practical purposes these pair off naturally as (35) with (38) and (37) with (36). The first pair requires

we find in the context a fresh b. The second pair introduces that fresh b. but only fresh for P. We ('an do

better than this using (32) as in remark 16, so this latter pair seems less useful.

The complete algorithm is therefore: simplify using (11) to collect all I/1 quantifiers in the hypotheses into

one single quantifier. Also use (13) to draw negations under the _ quantifier. Finally, apply the intro- and

elim- rules (35) with (38): possibly augmented with remark 16 to generate a fresh name where necessary.

Thus for example

Vpe, ram.s. Ha. P(a) A -'Ha. Q(a) ==> -,Ha. R((l)

simplifies to

a fresh b is introduced

gparmus. Ilia. P((z) A-_O(e_) ==> Ha. _R(a),

Vpar(tm.,s, b. b#params A Ha. P(a) A _Q(a) _ Ha. _R(o),

the intro- and elim- rules reduce this to

Vparams, b. P(b) A _Q(b) ==> =R(b),

and proof-search proceeds as normal. In the case that the fresh b is already in the context, as happened in

(aa), we use that supplied b instead. Call this algorithm newsimp. 0
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5 Difficulties implementing the algorithms

There are many technical ditficuhi(,s putting the ideas of section 4 into practice.

18 (split#). split# is described ill renlark 15. The steps of the algoritlun are:

1. ret)eated resolution with (26) folh)wed by, when this fails.

2. resolution with (28).

There are difficulties with both steps.

1. Isallelh, res(/lution with Isat)elle unification is higher-order, clef(x) unifies with a goal (_#t fl)r x niatches

t and f matches Ax.x the identity, and we have a non-terminating loot). The solution is to write ML c(ide

to only allow this step when I is syntactically an at)plication term tl $ t2, and package this up as an

Isabelle wrapt)er. An Isabelh, wrai)t)er, simplistically put, is an Isabelle theorem 'wral)t)ed' in ME e(lde

whi(:h i)rovid(,s some int(,llig('n) ('ontrol on how it may t)e applied, see remark 20.

2. It is impossibh' at (/l)ject l(,v_q 1(1 decide whether a term of the meta-hwel is cl(/sed (ir not. Again. we

need an ME wrapt)er.

The algorithm push described in remark 14 is similar and also requires wrappers. ©

19 (newname). To introduce a fresh b fresh for all variables xl,..., x, in the context, as we saw in remark 16,

we must examine those names. This is. as in the previous remark, an operation on the meta-hwel syntax and

must be implemented by an hiE wrapper which examines that syntax. O

20 (Isabelle wrappers). We observed in remarks 19 and 18 that three significant FM features require

ML wrapt)ers in implementation (split#, push, and newname).

Isabelle proof proceeds imperatively by apt)lying tactics to a proof-state. Simple tactics may apply a

particular transformation to the state. More complex tactics will carry out some kind of proof-search. These

automated tactics (written in ML) give Isatlelle proving much of its power. They are all essentially tree-search

algorithms of various kinds based on a library of Isabelle theorems which may be equalities, intro-rules, elim-

rules, as the case may be. In inductive reasoning we use this automation to automatically handle the dozens

if not hundreds and thousands (if separate cases which a proof ma.v entail. Wrapt)ers are apl)lied in between

proof-steps and perform well as intelligent agents which may examine the way the proof-state is developing

and perform for example soine kind of garbage-collection.

But consi(ter the examph_ of split#. This is implemented as a wrapt)er as discussed above in remark 18

but morally it is clearly a t)air of intro-resolution rules:

a# f A a#x ==V a# f x and rl#e if c closed.

In proof-search however split# will only be applied if none of the standard Isabelle theorems is applicable.

We cannot, using wrappers, interleave it 'horizontally' with the standard Isabelle theorems, only 'vertically"

with lower precedence, and in consequence proof-search is inefficient. Unfortunately there seems no cure

()tiler than dedicated FM proof-search ML (:ode, or to hack existing code to hardwire algorithms such as

split#, push, anti newsimp. 0

Now consider our treatment of the logic of I/1. This consists of equational theory such as (11) and (16),

of intro- and elim- rules

o#P, P((,) ==_ IAa. P(a) and (I/hi. P(,)), a#P ==v P(a),

and of newname discussed in remark 17.

Ill this and in the equation._ imnlediately following we introduce two itenls of notation. /_ here is not

a eonjmwtion (as ln'eviously used written Ai propi) but a meta-hwel Isabelle/Pure universal quantification

(A x. prop(x)). Also. a comma , denotes recta-level conjunction. I shall not be completely strict about

distinguishing meta-level Pure from ot)ject-level HOL, but /_ and , where used will definitely denote the

former.

As a sinlple example of a pr()of involving [,I consider a proof of

AI,.Q P(a), ida. Q(a) ==* I/hi. P(a)AQ(a). (39)
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Inductive reasoning tends to be resolution-based, so we prefer an algorithnl in thai style. Accordingly w(,

al)ply tilt, intro- and elim- rules at)or(,, along with the Coltjunction intro-ruh, A, 13 _ .4 A B, to ot)lain

/_ P. Q. P(?a(P, Q)), C2(':b(P. Q)) _ 'ta(P. (?)#P

A P' Q P(?a(P, Q)), Q(?b(P, Q)) _ ?.(P, Q)#Q

A P,(_). p(?(t(p,(_)),(._(':b(p.Q))) ==_ p(?.(p,(_)))

A P,(_). P(?a(p.(_))).Q)('?b(P,(_)) ==a Q)('/b(p.(_))).

Here ?a(P, Q) and ?b(P. Q) are unknowns which may be instantiated to any expression with free variables at

most lP, (_). The two freshness subgoals cannot be proved. We can use newname lo introduce a fl'esh parameter

into the context. })lit that only gives us

A P' Q' b. P('Z_(P, Q)), Q(?b(P, Q)), b#P, b#O _ ?_,(P, Q)#P

and "!it(P, Q) cannot be instantiated to b because b is a new fl'ee variabh, not amongst P. (_). Thus w(' ne(,(t

to apply newname before the resolution ste[)s an(t then the t)roof su('ceeds.

In another situation such as proving (31) the fl'esh name may be provided by the previous proof-context

and we (:ertainly do not want to apply newname: it will cause unknowns to be instantiated to ;Ill irrehwant

fresh parameter. It seems difficult to express a sensible and efficient conlpromise algorithm for this kin(t of

t)roof-search.

In tim rest of this section we step back and take a high-hwel view of these l)roblems. In Isabelle and oth(,r

theorem provers there are actually two kinds of variables. Free variables (t, b, x, y aim unknowns ?(_, '/b, ?.r. ?y.

Free variables are 'universal': they have an arbitrary value which ranges over all possil)le values. Unknowns are

'existential': the.')" should, by tile end of tiLe proof-search, be instantiated to some specific term t. \Vith these

built into the meta-level of Isabelle/Pure tile intro- and elim- rules for universal and existential quantification

are easy to write. This need not be the case. For examt)le in second-order A-calcuhls existential (luantification

can be expressed using universal quantification. Theorem provers do not use this because it is ilasty to work

with in imt)lementation.

It seems that the underlying problem may be that we are trying to encode using ])oth a an(] ?_ a kind

of 'freshness' variahle corresponding to the 'new' quantifier VI. The fact that we ilee(t both reflects tim V/3

duality of I/1 mentioned in remark 10. Like unknowns. 7a a freshlless variable (tel)ends on a (;ontext. for

which it is fresh, and two sufficiently fresh freshness variables may t)e assumed equal, 'instantiated to each

other', where convenient (think for instance of proving (11) or (12)). Like universals, freshness variables when

introdu(:ed extend the context, and other terms and variables may depend on ttmm if they are intro(hLt'ed

later (e.g. other freshness variables}. Trying to usefully express this in a dedicated logic belongs to flltur('
work.

6 The technical lemmas

This section can be skipped. For the interested reader we show a simple algorithm in acthm, constructed

using the tactics developed in section 4. The t)oint is that it neatly settles most of (23) to (32), which means

we ha_,e a decent algorithm. We skip to the fourth one (26) b#x A b#f _ b#f(x).

Unfold definition 8 and apply newname. We obtain

A b, x f. N('. (c b).x, b4c. (c b).f _ 1_('. (c b).f(x).

Apply newname

A b, _', f, c. c#b, :r, f_lc. (c b).x, _c. (c b).f _ _4c. (c b).f(x)

then newsimp to obtain

A b,.r,f,c, c#b,x, f(?cl(b,x,f,c) b).x = x. (?cl(b,x,f,c) b).f = f

(':c2(b. z, f, c) b).f(x) = f(x).
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It in now simt)h' to instantiaw '?el (b. x. f, (') and ?c2(b, x, f, (') to c, but we cannot apply push to Ill(, conclusion

and finish tim proof because (?c2(b, :r, f, c) b) is on the left, not the right. 1 had elided tilt, fifth)wing detail:

transposition is invertible on each type t)y (5) no x = (ul u2).y =* (ul u.,).x = y. push applies this as an

intro-rule, to "draw transpositi(m m the right". With this elaboration the proof runs smoothly.

The proof of (27) runs along similar lines. To prove (28) b#c we unfold definitions and use newsimp to

obtain

(:,,(t,, c) = c.

If c in a closed term push solves this completely (otherwise proof fails, as it should).

(29), (30), (31), are proved t>y the same script as (26). In fact. the script also t)roves (27) though its

behaviour for that goal, the I)ath outlined in the t)revious paragraph, in a little special.

(32) underlies newname. The t)roof is best tailor-made. We rewrite it as 3b. b#.r A T and intro-resolve

against (36) fl)r P = Ab.-l-, w(' now have l/lb. b#z, an instance of the axiom (9).

7 The state of the implementation

An Isalmlle/FM implementation exists but it is based on set theory rather than higher-order logic. This

creates technical difficulties which ultimately proved insurmountable for the following reason. Consider the

theoreltl

TyProd(t,, ¢2) = TyProd(t;,t') ==* t, = t'_.

In HOL this is rendered as

IL
TyProd(tf,t L) : TyProd(t; L,t,_ L) _ tf = t,

where we include all tyl)e mmot_aions. In sets the same theorem in

t

TyProd(t_,t2) = Tyerod(t_,t_), tl E L,t2E L,t'_ E L,t" EL _ t_ =t 1.

The difference is that when we intro-resolve against the HOL version we got one subgoal, whereas the sets

version produces five (one each for each hypothesis of the implication, which must be established in order to

at)t)ly it). A sets-based treatment of inductive datatyt)es overcomes this by implementing TyProd by some

cx)nstructor which is is injective on the entire sets universe "by coincidence", probably Inr(Inl(-)). In FM

this is not possible for various reasons which we now sketch.

Atoms must be marked as belonging to atomic type, the I/1 quantifier introduces fresh variables of atomic

type which nmst be marked as such, and atom-abstraction a, x _-_ a.x (which we have not discussed in this

paper, see [8, Section 6] or [6, Section 5]) is fundamentally non-il_jective so that tile tyl)ing conditions can

actually got quite complex.

Considerable ingenuity went into minimising the impact of these typing conditions in a sets enviromnent

(this should soon be the subject of a technical report). The price of using a HOL environment is i)recisely its

benefit, the relative rigidity the typing gives the theory relative to sets, with both theoretical and practical

consequences. In the recently-published [8] we provide what we hope is an elegant solution to the theoretical

difficulties which will also be imi)lt_mentable, and it remains to try implementing the approach.

8 Conclusions

This paper has given a very sinq)lified account of tile i)roblem of t)roducing an imt)lementation t)f a new

foundational system FM with new and unfamiliar predicates and constructors. We considered two simple

examples:

- Some theory of a datatyi)e of types with universal types _ and relations t)f (_-equivalen('e for it =,_

(defined using FM structure) and =,)' (defined in a more traditional style).

- Some technical FM lemmas (23) to (32).

These examples illustrated a fairly rich attd ret)resentative selection of t)roblems. \Ve presented solutions to

these prohlems and discussed their limitations. Another contribution of this paper is in what it elides: there

are complications to automating FM which this paper has tried to bring out. but the short, slick, parts in

between are the proof of how far we have already coine.
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Abstract. This l)al)er pres[,nts two protocols of SPIDER. a fault toleram t)road('asl communication

architectur(,. The Intera(tiv(' C(msistency Protocol ("Byzantine Agreement") takes care of reliable mes-

sage 1)r(,adcast in the presen('(, of malicious faults. The Diagnosis Protocol distributes local information

about the health status of nodes through the network, such that each node arrives at a correct and

consistent classification of which nodes are fauhy and which are not. Correctness here means that only

faulty nodes are (:onvicted. Such diagnostic information iu.ay ])e useflfl for on-line maintenance. The

two protocols are based on each othm': Diagnosis uses tim Interactive Consistency Protocol for reliable

t)roadcast of accusation ,nessages. Interactive Consistency relies on Ul)-to-date heahh status informa-

tion and produces diagnostic data. In order to formall.v prove that diagnosis is able to strictly improve

reliability we define the Dynamic Maxinmm Fault Assumption, which depends on the set of convicted

nodes. We provide formal prooN in PVS that given the Dynamic Maxinmm Fault Assumption and a

sane health status classification, the Interactive Consistency Protocol satisfies validity and agreement.

and that the Diagnosis Proto,:()l provides again a sane classification and convicts all benign faulty nodes,

all accused symmetric fault3 nodes, and asymmetric faulty nodes ac(:used by a majority of undeclared

nodes.

Keywords: fault tolerance. SPIDER, Byzantine, reliability, Diagnosis. Intera('tive Consistency.

1 Introduction

The Scalable Processor-htdependent Design for Electromagnetic Resilience (SPIDER) is a family of general-

purpose fault-tolerant architectures being designed at NASA Langley Research Center to support laboratory

investigations into various recov(,ry strategies from transient failures caused by electromagnetic effects. The

core of the SPIDER architecture is the Reliable Optical Bus (ROBUS). As part of an effort partially sponsored

by the FAA, the ROBUS is being developed in accordance with RTCA DO-254: Design Assurance Guidance

for Airborne Electronic Hardware.

SPIDER is a family of comnmnieation architectures that provide reliable broadcast in the presence of

multiple, possibly malicious ("Byzantine") fauhs (Figure 1). Various processing elements (PEs) are connected

by the Reliable Optical Bus (ROBUS). The PEs may be computing nodes, sensors, or actuators, or comt)osites

of them. The R()BUS is forme(t by a cohmm of N Bus Interface Units (BIUs), each connected to its PE.

and a cohmm of 3I Redundancy Management Units (RMUs). Each BIU is connected to each RMU, but

the BIUs attd RMUs are not connected to their own kind. In other words, the BIUs and the RMUs form a

complete bipartite graph. The tmmber of RMUs can be chosen freely; the sole purpose of the RMUs is fault

tolerance.

SPIDER. comes with three protocols: the Interactive Consistency Protocol, which takes care of reliable

message broadcast, the Diagnosis Protocol, which arrives at a global fault classification, and the Synchr(miza-

tion Protocol, whicil synchronizes the clocks of all nodes. Synchronization provides a basis for us to comt)ose

nodes synchronously in a way similar to Rllshby [4}. The SPIDER architecture and these three protocols

* This work was supl)orted by the National Aeronautics and Space Administration under NASA Contract No. NAS1-

97046 while the first author was in residence at ICASE, NASA Langley Research Center, Haml)ton, VA 23681-2199.

USA.
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Fig. 1. SPIDER architecture

are described in more detail in [2]. Formal Verification of the first and the second protocol are complete:

Forinal Verification of the third is currently under development. A fourth protocol is being designed: the

Readmission Protocol. Its purpose is to allow transiently faulty nodes to be reintegrated. All of t h(, t)rotocols
are being verified using PVS [3].

In this paper we t)resent two SPIDER protocols in detail: the Interactive Consistency Protocol and the
Diagnosis Protocol. The PVS me(Ms for the two protocols can be found at URL

http ://www. icase, edu/_geser/spider/diag, dmp

We state two essential assumptions. The first, called the Maximum Fault Assumption, ensures that the
health status of the REBUS is good enough for the protocols to work. The second, called the Corr(_(:t Active
Sources Assumption, takes care that the REBUS has a sane view of its health status. We show that under

these two assumptions,

- Interactive Consistency satisfies validity (the message of a goo(t node is faithfully forwarded to all re-

ceivers) and agreement (all receivers receive the same message);

- Diagnosis preserves the Maximum Fault Assumption and the Correct Active Sources Assumt)tion;
- Diagnosis provides convictions: every declared node is declared by all good nodes;

- Diagnosis declares all benign bad nodes, all accused symmetric bad nodes, and all asymmetric bad nodes
accused by a good majority of undeclared nodes.

In the design of the two protocols we take care that readmission is not impeded. For instance, some good

nodes may be distrusted for their former bad behavior. If there shall be a chance to readmit them, the

distrust must not go on indefinitely. \\_ address some of the ramifications. Moreover a readmission protocol

is dynamic by nature, i.e., it has to speak about the temporal evolutk)n of faults and their assessment. We do

not elaborate on this issue here. Interactive Consistency and Diagnosis are modeled as flmetional t)rograms.
A dynamic model is outside the scope of this paper.

2 Related Work

The protocols for the SPIDER were derived from a uumber af earlier architectures. The Interactive Consis-

tency protocol was inspired by the Draper FTP [6]. The initial PVS verification of the SPIDER protocol

was adapted from the verification of the FTP protocol t)erformed by Lincoln and Rushby [1]. The SPIDER

diagnosis protocol was inspired by the on-line diagnosis protocol developed for MAFT [8]. Our diagnosis
algorithm performs the same task as Algorithm DD in that paper. The PVS formalization of this protocol is

described by Waher, Lincoln, and Suri [9]. For the verification of the MAFT architecture, gathering of ac-
cusations was explicitly modeled. We have separated the mechanism of fault detection from the distribution

of the gathered fault inforntation. Our notion of diagnosis refers to the latter. W(_ give explicit constraints
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on what constitutes ;m accusation, i.e., the claim that a node is f;iult.v. Any accusation basis that satisfies
these constraints niav be use(l.

The SPIDER architecture differs fl'om many other fault-tolerant architectures in lhat it is not completely
connected. So the BIUs have no dir{,ct observations of their own kind. This fact has fulldanteutal ramifications.

A BIU may only make direct accusations against RMKTs. Any evidence that another BIU is faulty must come

indirectly through the RMUs.
Rushby presents a colnparisolk of f(mr safety-critical lnts architectures, including SPIDER. in [5].

3 Basic Types and Properties

3.1 Node Types and Symmetries

In the R()BUS architecture, BIUs and RMUs are somewhat symmetric to each other. This symmetry is not

perfect since, e.g., BIUs are ('onn('('ted to PEs and RMUs are not. H_wever il is tempting, and rewarding.

to exploit in PVS the symmetries t)resent.

The BIUs and tit(, RMUs a r(, instances of node types. Node tytles are modeled as types, below(K), of

integers in the range 0..K - l. ()n this account a node type is represented uniquely by its positive, finite

cardinal|(y, K. PVS theories may now be parameter|zeal by node type cardinal|ties, which may be instantiated

by N for the BIUs or by al for the RMUs. Sometimes we provide two parameters, L and R. for the node

types LEFT and RIGHT, which may be instantiated by N and M, respectively, or I)3"M and .\'. respectively.

If the theory thus parameterized describes a protocol then the two instantiations mean usage of the protocol

in two symmetric ways.

3.2 Hybrid Fault Types

Faults may be classified according to the p()tential consequences they may cause. Our at)proach is to assume

that arbitrary, Byzantine faults may exist, but that they are rare and that le,ss malicious faults come in

greater numbers. We distinguish the following hybrid fault tyt)es, introdu(:ed in [7], that a node can exhibit:

- A good node behaves a(:cor(ting to specification.

A benign faulty no(le only sends messages that are dete(:tat)ly faulty (this includes no(les that have

failed silent).

- A symmetric faulty no(le may send arbitrary messages, trot (toes so the same way to each receiver.

- An asymmetric faulty nod(, may send arbitrary messages that even may (lifter for th(' various receivers.

A node that is not good is called bad or faulty. The three bad hybrid fault types form a hierarchy in the

sense that an asymmetric node has all cat)abilities of a symmetri(' node, and a symmetric node may behave
like a benign node.

In view of readmission, we fln'ther split good nodes into trustworthy nodes and recovcrin 9 nodes. Both

behave perfectly identical but the trustworthy nodes must moreover be trusted whereas the recovering nodes

need not. The trustworthy nodes are the good ones that we can count on. Without rea(hnission, all good
nodes are trustworthy. With readmission, we may have a node that changes its fault status from benign to

.qood. For various reasons SPIDER cannot figure out instantaneously that the node has changed. So there is

sonm time interval where the node is alrea(ty good but SPIDER has not yet noticed it. We let the node be

recovering for some specified time to allow SPIDER to reset its trust in this node.

The sets of trustworthy, rec_vering, benign, symmetri(:, and asymmetric BIUs are denoted by TB, RB.

BB, SB, AB, respe(:tively. Likewise TR. RR, BR, SR, AR for the RMUs.

3.3 The Model of Communication

Data received by a node are of type robus_data[T] where the parameter T denotes the tyl)e of data to be

communicated. The type robus_data[T] comprises

- valid data of type T,
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receive error, a token that exi)resses the fa(q that an error has I)een (lete('ted (luring recei)li()n,

source error,

- no majority.

Note that the al)senee of an expected message ('an be detected, so a missing message is m(}deled t).v

receivc_crrvr'. The purt)ose of the tokens s_ru,r(:__(_r_vr and no_majority will be ext)lained in Ill(, Intera('-

tire Consistency protocol below.

The behavi(/r of a transmission line fr()m LEFT no(le l) t<) RIGHT node r. with data d t<) be sent. is

nlodeled as a function send in PVS as follows:

,scnd( statu,s)(p, d, r) : robu.s_data [T] =

CASES status(p) OF

tru,stworthy : d,

_w:ovez'ing : d.

benign : rece'ive_error,

symmetric: .s'ym_send(p, d),

asymmetric : asym_,_end(p, d, r)

ENDCASES

status represents the global fault assignment to nodes, which during this discourse remains unchanged. We

will henceforth suppress all status t)arameters in favor of a concise ret)resentation. As .scud nmst not use any

information available to the hardware, we let send have no parameters thai allow to deduce such information.

Conversely, as we will see beh)w, tile hardware must not have any access to the fault status.

The value d is of type robu.s'_data[T] rather than tyl)e T. This accounts for values that are relayed and

may so be non-valid at p even before transmission. A benign node acts in such a way that a detectal)le error

results at the re('eiver side. As we are not interested in the kind of error, we simt)ly record the fact of the

reception error. The behavior of a symmetric node is modeled by an uninterpreted fimction sy'm_.send. By

the definition of type rebus_data[T], the value of sym_send(p,d) must be some of valid(d'), receive_error,

source_error, no_majority for some d' : T. As we do not sI)ecify which it is, we have to cope with an arbitrary

function sym_send which is constraine(1 only by its l)aranleters. The parameter d expresses tile potential to

sen(t valid(d), i.e., to fake good behavior. The t)arameter p expresses the potential that each symmetric node

may exhibit individual t)ehavior. The synunetric behavior follows fiom the fact that r is not a parameter

of ,sym_send(p, d). For the asynunetrie nodes we have a similar uninterprete(l flm(:ti(m asym_send whi(:h

moreover has the parameter r and so the potential to exhibit asymmetri(: behavior.

3.4 How Faulty Node Behavior is Modeled

Bad behavior of a node is only observal)le through its communication. This gives us an extraordinary capa-

bility. \\k • may rightflfily I)reten(t that a bad node works like a good node, and that all faulty behavior is due

to the communication lines between nodes. Therefore we may speak about the state of a node as if it were

a good node. And we may assume that each node sends correct values. Only upon reception does the bad

character show up. We use this convenient view throughout the t)resentation.

3.5 Local Fault Classification

Each good node maintains a view of the health of all nodes. A node obs (the observe:r), may classit_v a node,

def (the defendant), as being

- trusted, if obs has no evidence of def being faulty;

- accused, if obs knows that def is faulty but is uncertain whether this knowledge is shared l)3, other good

observers;

declared, if obs knows that def is faulty and every good observer of the same kind also declares def.

The local fault classification forms a hierarchy of increasing knowle(tge of ob.s about def. Sometimes we will

need to merge knowledge arriving from two sources: in this case we will get the maximum, w.r.t, the order
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trusted < accused < declared, of the arrived vahtes. For instance, 'm,e_iqe(trusted. declared) = declawd and

meTye (declared, ar:e'used) = d(:clar_'d.

We (:all the map act thal assigns each pair of nodes, obs and def, a fault classification, aet(obs)(def),

the active-sources matrix _)f the ]IOBUS. More precisely, there is an active sfmrees matrix fi)r (,ach pair of

node types of observer and defendant. The value aet(obs)(def) is what obs takes def for in the current state.

The row act(obs) of the active sources matrix is called the actinic sources vector of obs. Note that its active

sources vector is all that obs knows about the health status of the REBUS. The following three properties

are required for active soure('s vectors, actv:

- good trusting: every good node is trusted.

- symmetric agreement: evvry non-asymmetric node is assessed the same way by two observers. 1

- declaration agreement: the set of declared no(les is the sam(' for any two observers.

The three conditions are rendered in PVS as follows:

good_trusting?(aetv) : bool = Vdef : good': ( def) _ trusted?( actv( deJ) )

symmetric_agreement? ( aetv i . aetv. ) :bool = Vdef : -, asymmetric? (def )

( trusted?(actv 1 (def)) ** trusted?(aetv 2 (def)))

declaration_ag_vement ? ( actv , . actv.2 ) : bool = V def : declared? ( aetv l ( def ) ) ¢v declared ?( actv., ( def ) )

The conditions good_trusting': and declaration_agreement? are clearly motivated by our definitions of

accused? and deelaTvd?. We will demonstrate in Exmnple 2 that symmetric_agreement? is an essential t)remise

to correctness of the lnteraeT iw_ Consistency Protocol.

In a new born R()BUS, no n,)de has any evidence of faulty nodes whatsoever. Hence every no(le trusts

every node. It is easy to verify that every row in this active sources matrix satisfies good_trusting?, and every

pair of rows satisfies symmetric_agreement? and declaration_agreement?.

During the Diagnosis Pr()t()(:()l, active sources vectors are merged with new evi(lence, which is also rep-
resented as an active sources ve('tor. The merge function is lifted to active sources vectors by

merge_aetive( actvl , act_,.z ) : active_vector_type[N] = Adef : mer9e( actv_ ( def ), aetv._,( def ) ).

3.6 Message Qualities

For the proofs it will be convenient to speak about the following properties a message may have. A data

vector may satis[v

- good message: a good no(te is assigned a valid message.

- benign message: a benign node is assigned receive_error.

- benign source: a benign node is assigned source_error.

- good vote for: all good nodes are assigned the same given message.

In PVS this is expressed by

good_m_ssage:?(dv) : heel = VG: good?(G) _ valid?(dv(G))

benign_message?(d_) : bool = VG : beni9n?(G) _ receive_error?(dv(G))

benign_source?(dv) : heel = VG: benign?(G) _ source_error?(dv(G))

good_vote_for?(dv, d) : bool = VG : good?(G) _ dr(G) = d

1 in view of the next property, it is sul-fieient to require that observers trust the same sets of non-asymmetric nodes.
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3.7 Accusation Vectors

During the Diagnosis Protocol, messages are transnfitted that carry information about the sender's classifi-

cations of other nodes. Usually only a certain aspect of the classification is wanted.

An accusation vector is a flmction from nodes to accusations, i.e., the values tcovking or failed. Accusation

vectors are sent across the REBUS to inform other nodes about some aspects of the local active sources

vector. To this end we provide two flmetions in PVS, one for encoding (form) and one for decoding (extract).

For th(, purposes of accusation exchange, we encode the inforlnation whether a node is trusted. N)I the

tmrposes of de('laration exchange, we (*ncode whether a node is (teclared:

form_accvec( actv )(p) : accusation = IF trusted?( actv(p) ) THEN working

ELSIF accused?(actv(p)) THEN failed

ELSE any_aeeusation( act_,, 1)) ENDIF,

extract_accvee(accv) (p) : trust = IF working?(accv (p)) THEN trusted ELSE accused ENDIF,

form_deevec(actv)(p) : accusation = IF declared?(actv(p)) THEN failed ELSE working ENDIF,

extract_deevee( accv) (p) : trust = IF working?( accv (p) ) THEN trusted ELSE declared ENDIF

In the design of form_accvec we leave deliberately open how declarations are translated. This is achieved

by the uninterpreted flmction any_accusation. In the current SPIDER implenmntation we took the choice

any_aeeusation(actv,p) = working. It is routine to t)rove a few lemmas that relate properties of aeellsation

vectors to t)roperties of active sources vectors.

3.8 The Maximum Fault Assumption

The purpose of the Maximum Fault Assumption is to both (1) hol(t with specified probability and (2) provide

a basis to conclude correct operation of the SPIDER protocols. In the absence of diagnosis, the Maximum

Fault Assumption is independent on the local knowledge of the health status of the system. SPIDER does

not tolerate a simultaneous asymmetric fault of both a BIU and an RMU. Moreover we need a majority of

trustworthy nodes of each kind. So the Maximum Fault Assumption is defined by:

1. 1TBI > tSBI + 1.4BI, and

2. ITBt > ISRI + IAnl, and

3. 1.4BI = 0 or IARJ = 0.

This Maximum Fault Assumption does not lint)rove by diagnosis, i.e., if diagnosis is able to declare new nodes

then this has no impact on the Maximum Fault Assumption. Hence there is no fi)rmal t)roof that diagnosis

has any positive effect. But there is a meta-level proof: assume that a node be('omes benign when declared.

Then declaring a symmetric or asymmetric node increases the majority of the good nodes, and declaring an

asymmetric node may deplete the set of asymmetric nodes of its kind. This recta-level construction, however,

does not allow readmission of transiently faulty nodes: a node that is diagnosed stays benign forever.

To enable readmisskm we introduce a weaker assumption that we ('all the Dynamic Maximum Fault

Assumption. It has an additional t)arameter, U. fin- the set of no(tes that some node does not de(:lare. The

Dynamic Maxinmm Fault Assumption is defined by:

1. [TBI > ISB n UI + lAB n UI, and

:2. ITRI > IS/? n U[ + 1.4/-/n UI, and

3. lAB n UI = 0 or 1.4n n Ut = 0.

Note that diagnosis improves the I)ynanfie Maximum Fault Assumption. As more nodes are declared, U gets

smaller, and so it is easier to have a majority of good nodes among U, or to exehMe asymmetri(' nodes from

U. Our hol)e is that (tiagnosis will particularly aid in the latter.
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4 An Informal Overview

4.1 The Interactive Consistency Protocol

A message broadcast protoc()l is called reliable if it satisfies the following two properties:

- validity: every good node recdves the value sent by a good node.

- agreement: all good nodes agree in the value sent.

For reliable message passing in the presence of various faults, we use the Interactive Consistency Protocol.

Vfe pz'esent the protocol pazmzu,terized 1)3' two node types, LEFT and RIGHT. that may be instantiated by

the types of BIUs and RMtTs, reslmctively, or 1)y the types of I/MUs and BIUs. respectively. D)r reliable

nmssag(, broadcast among the PEs, w(, need the former instance. Indeed, in the Diagnosis Protocol we will

need both symmetric instanc('s. The Int(,ra('live Consistency Protocol works as fi)llows:

1. A singh, LEFT node. 9, as per agreed schedule, broadcasts some value, valid(t,), to all RIGHT nodes.

2. Ew,ry RIGHT nod(' relays its received value, d, to all LEFT nodes. However. if d = receive_error then

it sends source_error to redirect the blame fl'om itself to the originator of the message.

3. Every LEFT node. p, collects the vector of values it received (one value per RIGHT node). Then it

determines the set of RIGHT nodes it trusts. A RIGHT node from which p receives receive_error is

accused by p. These classifications are merged with p's Active Sources Vector.

4. Else if p receives some value d,,aj from a majority of trusted RIGHT nodes then it determines d,,)aj and.

if draaa is non-valid, declares .q. Otherwise p determines no_majority and declares 9-

5. If LEFT g is declared by p ())ot including the recent declarations in Step 4) then p forwards souTve_error

to its PE. Otherwise p forwards the value deterinined in Step 4 to its PE.

We will refer to Step 1 as a single source b_vadeast, and to Steps 2 to 4 as a consistent source exchange.

Consistent source exchange will turn out useflfl outside the Inleractive Consistency Protocol.

IlO tllaj.

asylillil. , V

good

good

good

good

Fig. 2. Two counterexamples: Step 5 is essential for agreement (RMU 2 is asymmetric; see Example 1) and the

Symmetric Agreement premise is essential for agreement (RMU 2 is symmetric; see Example 2)

In a previous version of the Interactive Consistency Protocol. in Step 2 a relay turned d into souree_error

also in the case where it received a correct value but did not trust the general G. Although this is undeniably

correct, it is undesirable in view of readmission because a declared node has no chance to prove it is good

again.

Step 5 is introduced to ensure agreement under the weaker Dynanfic Maxinmm Fault Assumption. A

version that skips Step 5 and rather forwards the value determined in Step 4 to the PEs, may violate

agreement under the Dynamic Maximum Fault Assumption:

Example I. Let M = N = 3 (Figure 2). Suppose that BIU 1 is asymmetric, but declared: the Dynamic

Maximum Fault Assumption allows the existence of asymmetric, undeclared RMUs. Now h,t BII_7 1 send

valid(v) to the good RMU 1 and to the asymmetric RMU 2, aim a different valid(v') to the good RMU 3.
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Lel BIU 2 trust all RMUs. and let BIU 3 trust R.XIUs 1 and 3 only. Then Bit 7 2 finds a nlajority vahte.

valid(_,), whereas BIU 3 finds no majority. So the oht hlteractive Consistency Pro|ocol does not satisf_v

ag;I'eenlellt for the Dynanlic .\Iaxinluni Fault Assunll/tion.

A sinlilar exanlllle shows that the symmetric_agreement? premise is essential:

Ea:amplc 2. Let Af = .\' = 3. Sut)i)ose that Bit; 1 is asymmetri(' and the static Maxinnun Fault Assunqltion

holds. Now let BIU 1 sen(l valid(c) to the good RMU 1 an(t to the synmwtric RMU 2. and a different valid(c')

to the good RMI7 3. Let BIU 2 trust all RMUs. and let BIU 3 trust RMITs 1 and 3 (rely. So synunetric

agreenlent does not hohl. Then Bit 7 2 fin(Is a majority vahle, valid(el, whereas Bit7 3 finds nil ma.j()rity. S()

agreenlent is violated.

4.2 On the Collection of Evidence

During all proto(:ols each node re('ords evidence of faulty behavior of other nodes that it learns through

eonlnluniclttion. Sonic of this eviden(:e lllay lea(l to _111 a('cusation of a llO(]e. Solne evidonc(,, for illstalwe a

non-valid result of an hiteractive Consistency exchange, may even lead to a declaration of the general by

virtue of the agreement property.

We distinguish between direct and indirect observations that lead to accusations against no(les. A direct

observation is a single event that nlay lead to the accusation of the sender. Dire(:t observati(/ns are:

- No message was received during tile reception window;

- An imt)roperly formatted nlessage is received.

Tiles(, observations take place during all t)rotocols. "hnt)roperly formatted" may also nlean that an enco(te(t

nlessage does not pass the parity check. The effect (if a direct observation is modeled by the tvceive_error

token.

Indirect observations are a collection of events that together provide the basis (if an accusation. This

involves a nlajority vote. They come ill two kinds: either a node of the same kind. or a node of the other

kind is accused. Let tile (liagnosing node be a LEFT node.

1. a nlajority of RIGHT nodes offer evidence against a LEFT node; that LEFT node is al:cused.

2. in a consistent source exchange, a RIGHT node disagrees with the majority; this node is accused.

3. in an hlteractive Consistency exchange fronl the LEFT, there is no majority: then the general is accused.

4. in a majority of Interactive Consistency ex(:hanges from the LEFT, a RIGHT relav disagrees with the

majority; this relay is accused.

By tile, agreement property, an accusation of the Form 3 is made by all LEFT observers, so they may issue a

declaration. \_ conjecture that, likewise, an accusation of Form 1 can be turned into a declaration. A typical

case is the declaration of a general of an hlteractive Consistency exchange on the basis that a nlajority of

trusted RIGHT nodes vote for source_erTvr. All of these indirect observation mechanisms are in t)laee in lhe

current SPIDER implementation.

4.3 The Diagnosis Protocol

The purpose of tile SPIDER Diagnosis Protocol is to distribute tile local accusations in order to arrive at a

consistent classification of the health status of the ROBUS. It does that by merging the active sources vectors

with new declarations. By the bipartite ROBUS architecture, agreenlent among all nodes cannot be reached

in one sweep. Rather, agreement among nodes of the sanle kind is achieved first, i.e., we get declarations.

This step is called tim accusation exchange. Agreement among nodes of opposite kind is achieved in the

second sweep, the declaration exchange.

The Diagnosis Protocol shall preserw_ good_trustin.q?, symmetric_agreement?, and declaration_agreeme'rtt?.

By the fact that classifications are merged, the Maxinmm Fault Assumi)tion is also t)reserved. We require

moreover that the Diagnosis Protocol establishes the following properties:

- conviction agreement: every declared node is convicted, i.e., it is declared by both kinds of nodes.
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-- benign declaring: every benign node is d(,(:lared.

- symmetric declaring: every symmetric node that is accused by a good node is dee]ar(,d.
- majority declaring: if a set of good LEFT nodes that finms a majority among the untteelared and

non-benign LEFT nodes at:(:uses a node then that node is declared. Likewis(, for RIGHT nod(,s.

The t)roperties are rendered in PVS as follows:

conviction__zyree'm ent'?( actll , act1,.) : bool =

Vq, r : 9ood'?(q ) & good?(r) _ deelaration_agreemeni'?( acttt(q), aeth.(r) ).

beni gn_dcclar_ng ? l actv ,l) : heel = V def : benign ? ( def ) _ dcclarcd ? ( actv ( def ))

symmetric_dccla_'in g'? (aetv ,ll , actv d.2) : heel =

V def : accused? ( actv,ll (def ) ) & symmetric? ( dcf ) _ declared? ( actv a',_( dcf ) )

majority_declarin,f: ( artvll , actval, aCtVd2) : bool =

V dcf : _ working 7 (majority ( undeclared( actvl_ ) \ benign,, working.

soIM(fornt_ accvec ()_G : ac.tv ut (G)( def ) ) ) ) )

declarcd?l acta._,( dcf ) )

where the auxiliary funct_ion solid is defined by

solid(accv)(G) : accusation = IF good?(G) THEN aeev(G) ELSE workin9 ENDIF

The operator \ denotes set difference.

The requirements are motivated as follows, conviction_agrvement? expresses the maximal distribution of

declarations: every node arrives al the same set. Of course we want to declare as many bad nodes as possibh,:

all benign nodes, all symmetric nodes accused by a good node, and some asymmetri(: nodes. Examt)le 3 below

shows that in the property majority_dcc.laring?, it is essential that the accusing nodes that are in the majority

are good. In other words, it is essential that the accusing zlo(les that form a majority are good. solid(acc_,)
denotes the set of accusations in accv that cannot be shattered.

The Diagnosis Protocol works as follows:

1. BIUs reliably ex(:hange their accusations. If a majority of undeclared BIUs accuse a node then that node
is declared.

2. tlMUs reliably ex(:hange their accusations. If a majority of undeclared RMUs accuse a node then that
node is declared.

3. BIUs broadcast their declarations to the RMUs; the RMUs merge these with their declarations.

4. RMUs broadcast their declaratkms to the BIUs; the BIUs merge these with their declarations.

We exploit the obvious symmetry by t)roviding an accusation exchange proto(:ol and a declaration exchange
t)rotocol, each parameterized wit h LEFT and RIGHT.

The accusation exchange protocol works as follows:

1. each LEFT node, G, uses the Interactive Consistency Protocol to broadcast, to all LEFTs. its vector ()f

accusations against any node.

2. after Step 1. each LEFT node, p, has collected a vector of received values (one value per general G).
3. LEFT nodes from which p r,,('eived souTve_erwor arc declared by p.

4. If a majority of (then) vndeclared LEFT nodes accuse a node then that node is declared.

The declaration ex('hange protocol works as follows:

1. by a consistent source (_x(:h;mge, each RIGHT no(te, r, broadcasts its declaration vector to all LEFT
nod('s.

2. each LEFT node, p, merges _he received declarations with its own active sources ve('tor.

The following counterexample shows that a majority of undeclared accusers may or may not lead to the

declaration of a node. If a bad accuser is tossed out of the set of undeclared nodes ttmn the majority may get

lost. Even worse, the Ol)l)osite of its vote may be received. In other words, for property nmjority_dcclaring'?

it must be good nodes that form the majority.
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SVIIIlll.

good

good

r.e. -- rec('ivf,_(,rior

asynun.

Fig. 3. A majority that is supported I)3, a symmetric node (see Example 3)

Example 3. Let M = _\: = 3 (Figure 3). Suppose that BIt; t is symmetric, thai BIUs 2 and 3 are good. and

that BIUs have no declarations against each other. Next suppose that IIMU 1 is as)'mmetric and trusted

by the BIUs. We do not care about the other RMUs. Now let the BIUs receive receive_error. _alid(_'), and

rveeive_error, respectively, fl'om RMU 1 during some Interactive Consistency _,xchange. This has the BIUs

2 and 3 accuse RMU 1. We now show that RMU 1 is declared if and only if BIU 1 is nt)t excluded from the

vote of the BIUs. If the RMUs receive receive_erTvr fl'om BIU 1, then they forward souTre_error to all BIUs,

so all good BIUs declare BIU 1. But then the nmnber of votes (one) that accuse RMU 1 is not sufficient

to form a majority in the set {BIU 2, BIU 3}. So t/MU 1 is not declared. However if the t3MUs receive a

correct accusation vector from BIU 1 then the number of votes (two) is sufficient for a majority in the set of

all BIUs, and RMU 1 is declared.

Example 3 witnesses the strange fact that diagnosis may profit from a faulty node (Bit' 1) going mlde-
letted.

5 The Formal Model

The fl)llowing description is intended to aid the reader in understanding the PVS proofs.

5.1 Majority Votes

Suppose that every LEFT node t)resents a value to our receiving no(te. These values form a value vector.

vv. The set of voters for a value v is defined by {i I w:(i) = v}. Some voters (:an be excluded from the vote

t)3, a filter set H; only votes of members of H are counted. Now v is in the majority among H in vv, if

21H A {i I vv(i) = r}t > [U[. The flmction majority(H, default, cv) yields this unique majority value v if it

exists, otherwise it yields the default value, default. Two value vectors are called H-similar if they agree for

nodes that are in H. Formally:

.similar_veetor?(H, vvl, vv.,) : heel = Vi : H(i) _ vv_ (i) = vv.,(i)

The outcoiile of the vote agrees for similar vectors:

Lemma 1 (Majority unique).

similar_vector'!( H, vvl , vv.)) }- majority(H, default, vvl ) = majority (H, default, v_.,._,)

If the good nodes (of one kind) agree, then the value they vote will be the majorily value:
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Lemma 2 (Good vote for majority).

L qbrid_majority_good?(H), hybrid_selectT(H),

.qood_vote_for ? ( m', v)

majority(H, default, _,v) = v

There is one variant of Lemma 2 t)er node kind. For the BIUs, hybrid_majority_good?(H ) stands fl)r ITB I >

[SBRH[ + [At3C3HI; hybrid_seleet?(H) (tenotes that TB C H and BBr3H = 0. Tit(, two properties together

ensure that 2]TB A H I > [H I. i.(,., the goo(t are in the majority atnong H. Since the set of good nodes is a

sat)set of the set of nodes that vote for v, the value v will l)e the majority value.

5.2 Consistent Source Exchange

In view of their role in the hlt(,raetive Consistency Protocol. we call the transmitters in a consistent sour(:e

ex(:hange re.lays.

Sat)pose that dv (t(motes the vector of values sent by the relays. The fimction 7clay_data. define(l by

rela_.l_data(dv)(r)(G) : robus_data[T] = input_filter(send(G, dr(G), r)),

descrit)es the values received at r and preprocessed by input_filter. The preprocessing replaces all unexpected

message formats, such as no_maiority or source_era'or, by receive_emvr. The function dim_relays(de, aetvt)

merges actvt, the active sources vector of the receiver, with the fresh evidence obtained from the received

data vector dr: a node front which r'eeeive_error was received is accused. The fimction vote. defined by

vote(&,, actvt ) : rob,Ls_data[T] = majority( trusted( elim_relays( dt,, actvl) ), no_majority, dr),

yields the majority vahle among the trusted nodes if it exists, and no_majority else. The consistent source

exchange is modeled in PVS as a flmction

esz(d,,, actt)(r) : robus_data[T] = vote(relay_data (dv)(r), actvt)

The following theorem assumes that a RIGHT node, r, trusts all good nodes; every good LEFT node

G sends a valid message de(G); all good nodes send the same value d; the set of trusted nodes has greater

cardinality than the set of symmetric or asymmetric nodes. It says that then r deterlnines the value d. The

active sources vector of r is (ten()ted l)y actvl. The vector of data that the LEFT nodes sen(t is given by dr.

We will abbreviate elim_ relaqs (relay_data (dr) (r), actvt ) t)y elim_esx_relays (dr, actvt ) (r).

Theorem 1 (Validity of consistent source exchange).

good_tr'a._'ting?( actvl ), 9ood_message?(&,), .qood_vote_for?(dt,, d),

hybrid_m ajority_9ood? ( trusted ( elim_csz_relays (d_.,, actvt ) ( r )) ),

csx(&_, aetvl)(r) = d

PTvof. relay_data has the i)rot)erty benign_message? and t)reserves the pair of properties good_message?

and 9ood_vote_for?. Nex_ trusted(elim_csx_relays(dv, actvt)(r)) satisfies hybrid_.seleet?. Lemma 2 finishes

the proof.

The following lemma is crucial for the agreement theorem below. It states that if two right nodes trust
no asymmetric left node; trust the same symmetric left nodes: and receive the same data vectors, up to data

from non-trusted relays, then they will finally trust the same left no(tes.
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Lemma3 (Trusted agreement).

no_ asymmetric?( trusted( actvtl )), no_ asymmetric?( trusted( aetvr, )).

sy'mmetric_agTvement?( aetvll , aetvl_ ), similar_vector? ( trusted( actvtl ), d,h . de._,),

trusted( elim_re.lays (dvl , aetvtl )) = trusted( elim_relays (dr._,, actvt_ ))

(1)

Pro@ Let x 1)e a node. \Ve prove that x is trusted by the active sources vector elim_Tvlays(dvj, aetvtl) iff.r is

trusted by elim_relays(dvj, actvr,.). If x is asymmetric then by (1), x is trusted neither by act,,tl nor by aetvr,.

Because elim_relays(dVl, actvt) trusts less nodes than actvt for all aetvt, we get the claim. So let a: be non-

asymmetri(:. Then t)y syImnetrie agreement, actvtj (x) = aetvr_,(x). If actvll trusts .r, then dr1 (x) = dv.,(x)

because dvl, dr., at'(" trusted( actlL )-similar. It turns out that then the relays disqualified by dr,. (h,_ are the

same. Finally, if aetvtl does not trust x, neither elint__vlays(dvl, aetvtl) nor elim_Tvlays(dvl, actvr_,) trusts

Theorem 2 (Agreement of consistent source exchange).

good_trusting?( aetvtl ), good_trusting? ( actvt2 ),

symmetric_agreement?( actvtl , actvt2), good_message?(dv),

no_asymmetric? ( trusted( actv t l )) & no_asymmetric ?( trusted( aetv r.,)) ()R

9ood_vote_for? (dr) & hybrid_majority_9ood? (trusted( elim_esx_relays (de, aetvlx ) (rl ) )) &

hybrid_majority_good?( trusted( elim_ esa: _relays (dr, actvt2 )(r2 ) ) ),

esx(dv, aetvtl )(rl) = csx(dv, actvt2)(r2)

('2)

(3)

(4)

Proof. By (:as(, analysis. If (2) then the vectors received by an): two RIGHT nodes are similar. Lemma 3

establishes that the sets of trusted nodes agree for rl and r2. Hence rl and r._ will arrive at the same result

of the voting. If rather (3) and (4) hohl, then csx(dv, act,,ll)(rl) = dr(p) = es:r(dv, actvr_))(r.,) for some good
LEFT p by two apt)lications of Theorem 1.

For curiosity we mention the remarkable fact that only the most ut)-to-date set of trusted nodes,

elim_esx_relays(dc, actvt)(r), needs to satisfy the hybrid_majority_good? prot)erty. This is the best behavior

one may ask for. However in favor of a simple approach we will replace this premise to the more conservative
hybrid_majority_good'?( trusted( actvt ) ) ).

5.3 Single Source Broadcast and Interactive Consistency

Single source broadcast is modeled iil PVS as a flmction

source_data(d, G ) (r ) : robus_data[T] = souree_filter( input_filter( send ( G, d, r ) ) )

where source_filter replaces receive_erTvr by source_error and leaves all other messages unchanged. We will
refer to the sender, G, of the broadcast as the general.

The Interactive Consistency Protocol is then summarized in the function

horn(act, actv,., G, v, p) : robus_data[T] =

IF declared?( act ) THEN source_error ELSE esx( souree_data( valid(v), G), aetv_)(p) ENDIF

We will abbreviate elim_csx_relays (source_data (valid (v), G), actv_, p) by elim_ic_relays ( actv ,., G, v, p). Inter-
active Consistency satisfies Validity and Agreemenl:
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Theorem3 (Validity of Interactive Consistency).

hybrid_ majority_.qood? (trusteed ( dim_ic_rch_ys ( actv ,.. G, c, p )) ).

good_trustr,#':. ( actv ,.) ,

_asymmetric( G). -,declared?(act)

F-

hem( act, _lctv,., G, v, p) = so'urcc_data( vMid( c), G)

Pro@ Each RIGHT node will get the same message, source_data(valid(v). G, r), since the general. G. is nol

asymmetric. So all good RIGIIT nodes vote for this message. Moreover sourre_tlntn satisfies benign_source?

and preserves good_message?. The claim follows by Theorem 1.

Theorem 4 (Agreement of Interactive Consistency).

no_asymmetric'. _( trusted( actv,. 1) ) & no_asymmetric? ( trusted (actv ,.2 ) ) OR

declared?( actl ) OR

_asymmctric('G) &

hybrid_tnajority_good'_. ( trusted( elim_ic_relays ( actv,q , G. v, pl )) ) &

hybrid_m ajority_good': (trusted ( clim_ic_relays ( actv ,.2, G, _,,p., ) ) ).

good_trusti'ng? (actv,, l ), good_trusting?( actv r2 ),

symmetric_agre.r'.ment'_. ( actv,.l , actv_.2),

declaTvd? ( act 1 ) = declared? ( act., )

hem( act 1, ,tctv, t, G, r, pl ) = hem( act.,, actv _.,, G. c, p: )

Pro@ If the general, G. is declared by Pl or by P2 then it is declared by each. So hem(act1, actv,.l, G. v, P l ) =

source_error = hem( act =,.actv ,.2 , (7, v, p:,).

If G is not asymmetric, each RIGHT node will get the same message, source_data(valid(_,).G, r). So

all good RIGHT nodes vote for this message. Moreover source_data satisfies benign_source? and preserves

good_m_ssagc?. By Theorem 2 the claim folh)ws.

As corollaries fl'()m Theort,m 3 we get that the value sent by good nodes is indeed forwarded by all LEFTs

to their PEs; source_error is forwarded if the general is benign: and the same value, sym_send(g, valid(v)),
is forwarded if the general is un(t_,clared and symmetric.

5.4 Accusation Exchange

Accusation Exchange is split into two parts: the reliable passing of accusation messages, and their voting.

The following PVS flmction t)rovides accusation message passing:

mxfer( actH. act,.i, actdl )(p)( G) : _vbus_data[accusation_vector_type[D]] =

hem( act H(p ) (G ) , act ,.1(p))(G, .form_ accvec (actel(G)). p)

Here every general, G, uses the Interactive Consistency Protocol to communicate its accusation vector to

every receiver, p. The accusation vector is fi)rmed from G's active sources vector, actdl(G). The receiver

node uses its active sources vect(Jr, act,q(p), to identify the trusted relays, and the trust value act,(p)(G).
to decide whether G is declared.

The received accusation vectors are then t)roeessed as follows. First the received vector of messages, one

message per LEFT node, is unpacked by unpack_vec, defined by

unpack_vec(_:) : accusation_vector_typc[D] =

IF 'valid(v) THEN value(v) ELSE any_accusation(v) ENDIE
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If v is a valid message then its value, an accusation vector, can be extracwd faithflfllv. Else we return an

arbitrary vahle by the uninterpreted flm('tion any_aceus'atio'u(v) : aec'u._atioT__reetor_type[D]. A node can
<te<'lare a source from which it receives a non-vali<t message:

disqualified_sources(dr): active__,eetor_type[L] =

AG : IF valid(dr(G)) THEN trusted ELSE declared ENDIF

This declaration set is merged with the active sources vector of the receiver:

elim_ disqualified (dt,, actvt ) : active_vector_type [L] =

merge_aetive ( disqualifl'ed_sourees( dt, ) , aetv t )

The accusation vectors obtained fl'om the undeclared sources h)rm what we (:all the receiver's aeeusatio_

matri.T. A row being the accusation vector received from a node (the aeeuser), the cohmms form the vectors

of accusations against a node (the d@ndant). For each defendant, def, the receiver does a inajori D vole on
the column of the accusation matrix. Only the votes of undeclared nodes are counted.

court( actvt , dr) : accusation_vector_type[D] =

Adef : majority ( undeelared ( aetv l ), working ) (AG : unpaek_vee ( dv( G ) ) ( def ) )

The default value of the majority vote is working, in order to imph_ment the prineiI_le "not guilty until
proven guilty". The flfll voting complex of the accusation exchange is modeled as

aecz(dv, aetvt, aetvd) : active_veetor_type[D] =

rnerge_aetive( e_:traet_decvec( court( elim_disqualified (de, aetvt ), dr)), aetv,_ )

The complete accusation exchange is the composition of the transmission with the processing primitive:

accx_combo (actu , act_l, actdt )(p) : active_vector_type [D] =

accx ( mxfer( aetu, act,q, actat )(p), actu (p), actdt (p) )

Under reasonable assumptions, accusation exchange satisfies good_trusting?, symmetric_agreement?, and

declaration_a9reement?. To reduce technical clutter it is usefid to split the proofs into lemmas about the

components, aeez and m:rfer. We render here only the most involved proof of the three:

Theorem 5.

hybrid_majority_good? ( undeclared ( dim_disquali fied (dr, aetv t) ) ) ,

good_trust inq ? (actv d ) , 9ood_trusting ? ( actv t),

good_message?(dv), benign_souree?(dt,), accusation_message?(dr )

good_trusting?( aecx (dr, actvt, actt, d) )

Pro@ From the premises 9ood_message?(dv), benign_souTre?(dc), and good_trusting?(actvt), the property

hybrid_select?(undeclared(elim_disqualified(dv, actvt))) follows. By the definitions of merge_active and of

eztract_decvec, we have to prove that court associates working to each good defendant, def. So let def

be a good node. We have to show that no majority of undeclared sources accuses def. By the premise
accusation_message?(dv), all good LEFT nodes agree in that def is working. By Lemma 2 the claim follows.

Given hybrid_ majority_good?( trusted( actrt (p))), good_trusting?( aetu (p) ), good_trusting?( act,.t (p)), and

9ood?(G), the result of mxfer satisfies good_message?, benign_source?, and accusation_message?. So we ma.v
conclude:
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Theorem 6.

hybrid_majority_good'! ( und_clarcd ( elim_disqualificd ( dr, act tl (p ) )) ),

hybrid_majority_good?( trusted( act ,.t(P) ) ),

.qood-trusti_9 ? ( act dl (p) ) , good-tr_Lstin.q'_. ( act u (p) )

good_tr_sti_g?( accx_combo( aettt , act,.t, ar'tcdt )(p) )

5.5 Like Accusation Exchange

The exchange of accusation against mflike nodes is exactly what we have just sketched. Exchange of accusa-

tion against like nodes has the additional Step 3. \\'(! model it 1)y a merge of the at'CllSatiotl exchitll_(' with
the new evidence.

acc:r_combo_likr_( actH, act,q )(p) : active_re'trot_type[L] =

meTye_active( merge_activc( disq_combo( actu , act,.i , actH ) (p),

disq_ combo ( actH, act ,.I, act,.I ) (P) ),

accx_combo ( actH, act,.j, actH ) (p) )

The active sources vector disq_combo(acttl, act_l, acttl)(p) expresses the declarations uttered against the

generals from which sou_rc_error was reeeiw, d during the, accusation exchange against LEFT (i.e., like)

nodes. Similar declarations can be made during the accusation exchange against 1lIGHT nodes, yielding

disq_combo(actH, act,.¢, act,.i)(p). The two active sources vectors are merged to the accx_combo result.

It is straightforward to show that this merge preserves all t)roperties claimed for acc:r_combo. So these
properties also hold for acc._:_combo_like.

5.6 Declaration Exchange

The reliable transfer of the d_clarations to the opposite kind of nodes is done by a consiswnt source exchange.

Each node, G, sends its vector of declarations against defendant nodes to all unlike nodes, r.

declxfer(actdl, acb,)(r) : robus_data [accusation_vector_type [D]] =

csx( )_G : valid(form_decvec( actdt(G) ) ), actl,.(r) )(r)

Theorems 1 and 2 provide validity and agreement of declxfer. The received message, d. containing a decla-
ration vector, is unpacked and merged with the local active SOllrces vector:

get_convictions(d, actv d) : active_vector_type[D] =

m,rye_active( extract_decvec( unpack_vec( d) ), actv a)

It is easy to prove that the properties symmetric_agreement?, declaration_agreement?, and benign_declaring?

are preserw'd by get_convictions with a fixed argument d.

Conclusion

We have provided a complete tbrmal model of two of SPIDEII's protocols: Interactive Consistency and

Diagnosis. We have given formal proofs in PVS that under the Dynamic Fault Assmnption and the Correct
Active Sources Assumption, Interactiw, Consistency satisfies Validity and Agreement, and that Diagnosis

preserves the Dynamic Fault Assumption and the Correct Active Som'('_'s Assumption and moreover is abl(,

to declare some faulty nodes.

The design effort and the paralM Formal Verification effort showed a remarkable cross-fertilization. The

symmetric_agreement? property was first introduced as a fix to the formal w_rificat.ion. Later it turned out to
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be au ess('ntial pr(mlis(,. C(msidc,rations for readmission of transiently faulty nocl(,s show(,d thai $wp 2 in ttw

Interactiv(, Consistency Protocol ('ffectively t)revent¢,d a recov(,ring nod(, from (wet being r¢,admit|ed. The

ensuing redesign uncovered the potential to straighten the PVS code of tim Interactiv(, Consistency Protocol.

That in turn lead to the prt_s(,ntation of Int(_ractiv(_ CoIlsistency as a combination of sing;l(_ som'c¢, I)roadcast

and ('onsist(mt sour('(, (,xchange, the latter being wused for declaration (_xchange. T[w discov(_ry that th(,

Maximmn Fault Assumt)tion was unsuitable for readmission led to a complete r('design that culminawd in

the failure of agreement of Interactiv(_ Consistoncy and the recognized n(,(_(] for St(_|) 5.

Probably th(_ most important lesson that w(, can (lraw is th¢_ following: If our (:onj(_('tur(, that all a('('usa-

tions against lik(, nodes may b(, tin'ned into (](_(:larations turns out true, th¢,n tlw Diagno._is Protocol can 1)(,

strut)lifted. Th(, accused value for trust values against lik(, re)des, and the exchange of accusations against like

nodes can b(' scrapped. This saves N x N + .1I x Al register bits and half th(, bandwidth of the a('('usati(m

(_x(:hang(_.
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Abstract. The Accellera standards-pronmting organisation selected Sugar 2.0, IBM's formal spe(ifi-

cation language, as a standard that it says "will drive assertion-t)ased verification". Suqar 2.0 combines

aspects of Interval Temporal Logic (ITL), Linear Temporal Logic (LTL) and Comtmtation Tree Logic

(CTL) into a properly language suitable for buth formal verification and use with simulation test

benches. As industrial str(mgth languages go it is remarkably elegant, consisting of a small kernel

conservatively extended by mlmerous definitions or 'syntactic sugar' (hence the name).

We art' constructing a semantic embedding of Su.qar 2.0 in the version of higher order logic supported

by the HOL system. To 'sanity check' the semantics we tried to prove sotlte simple properties and as

a result a few small bugs were discovered. \Ve hope eventually to obtain a formal semantics that, with

high confidence, matches the official 'gohten' semantics issued bv Accellera.

We are contemplating a variety of applications of the semantics, including Imilding a semantics-directed

Sugar model checker inside HOL. We also hope to investigate generating checkers by executing proof

scripts that rewrite the sentanties of particular constructs into an executable form. In the hmger term

we want to investigate the use of theorem proving to reason about models with infinite state spaces,

which might involve developing extensions of Sugar 2.0.

1 Background on Accellera and Sugar

The Accellera organisation's website has their mission statement:

To improve designers' prodm:tivit3; the electronic design industw needs a methodology based on

both worldwide standards and open interfaces. Accellera was formed in 2000 through the unifica-

tion of Open Verilog International and VHDL h_ternational to focus on identi(ving new standards.

develot)ment of standards mut fi)rmats, and to _ster the adoption of new methodologies.

A ccellera's mission is t o drive worldwide development an d use of s tan dards required by ._'stems, semi-

conductor and design tools companies, which enhance a language-based design automation process.

Its Board of Directors guides all the operations and activities of the organisation and is comprised

of represe_ntatives from ASH' manufacturers, re'stems companies and design tool vendors.

Faced with several syntactically and semantically incompatible formal property languages, Accellera initiated

a process of selecting a standard property language to "drive assertion-based verification".

Four contributions were initially considered

- Motorola's CBV language;

- IBM's Sugar (the language of its RuleBase FV toolset);

- Intel's ForSpec;

- Verisity's e language (the language of the Specman Elite test-bench).

After a combination of (tiscussiml an(t voting, some details of which can be viewed on the web 1, attention

was narrowed down to Sugar and CBV, and then in April 2002 a vote'-' selected IBM's sul)Inission, Sugar 2.0.

Sugar 2.0 is primarily an LTL-based language that is a successor to the CTL-based Sugar 1 [1]. A key idea

of both languages is the use of ]TL-like [4] constructs called Sugar Extended Regular Expressions. Sugar 2.0

1 ht t p://www.,,da.org/vh'/hm/

2 htti,://www.eda.org/vh,/hm/O795.htm I
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retainsCTLconstructsin its Optional Branching Extension (()BE), but this is de-emphasised in lira defining
document.

Besides nlovirlg frt)ln CTL to LTL, Sugar 2. (? SUl)t)ort:s clocking and finite t)aths. Clocking allows ()lit' tO specify

on which clock edges signals are sampled. The finite path selnalltics allows prolmrti(,s to 1)¢, illterl)reted on

simulation runs, as in test-bench tools like Vera and Specman :_

The athlition of clocking and finite path senlantics makes the _ugar 2.0 senlantics nlore than twice as

complicated as the Sugar 1 semantics. However, for a real 'industry standart[' language Sugar 2.0 is still

rc'markably simt)le, and it was routine to define the abstract syntax and semantit:s of the whol(_ languag(, in

the logic of the ttOL syst(,m [3].

Ill Section 2 we discuss the point of embedding Sugar ill HOL. In Section 3, semantic embedding is reviewed

and illusu'ated on simplified semantics of fl'agments of Sugar 2.0. In Section 4, Ill(, st!nlanlics (if fltll Sugar 2. fl

is discussed, including finite paths and clocking. Due to space limitations_ the complete senmntics of S'ug(lr 2. fl

is not given here., but (:Jill be found on the web. '1 Ill S(_ction 5, progress so far in analysing the S(_lll_lll|i('s

using the HOL system is discussed. Finally. there is a short section of conclusions.

2 Why embed Sugar in HOL?

There are several justifications for the work described here. This t)r(/ject started in April 2002 and its goals

ar(, still being defined. Current motivations include the following.

2.1 Sanity checking and proving meta-theorems

By formalising tim semantics and passing it through a parser and type-checker one achieves a frst level

of sanity checking of the definition. One also exposes possible ambiguities, fllzzy corner cases etc (e.g. see

Section 4.2). The process is also very educational for the formaliser and a good learning exercise.

There are a number of recta-theorems one might expect to be true, and l)roving them with a theorem

prover provides a further and deeper kind of sanity checking. Ill tile case of Sugar 2.0. such recta-theorems

include showing that expected simplifications to the semantics occur if there is no non-trivial (:locking, thai

different semantics of clocking are e(tuivalent and that if finite t)aths are ignored then the stan(lard 'text-book

semantics' results. Such recta-theorems are generally nlathematically shallow, but fllll of te(tious details

i.e. i(teal for automated theorem t)roving. See Section 5 for what we have prove(t so far.

2.2 Validating definitional extensions

A key h'ature of the Sugar approach indeed the feature fronl which the name "Sugar" is derived is to

have a minimal kernel augmented with a large number of (tefinitions i.e. syntactic sugar to enhance the

usability (but not tile expressive power) of the language.

Tile definitions can be validated by proving that they a(:hieve the correct semantics. See rile end of Section 5.3

for some examples.

2.3 Machine processable semantics

The current Sugar 2.0 document is admirably clear, but it is informal mathematics presented as typeset

text. Tool develot)ers could benefit from a machine readat)le version. One might think of using some standard

representation of mathematical content, like MathML '_, however there is currently not much mathenmticall.v

sophisticated tool support for such XML-based representations. See the end of Section 5.4 for a bit more
discussion.

Higher order logic is a widely used formalisation medium (versions of higher order logic are use(t by HOL,

Isabelle/HOL, PVS, NuPrl and Coq) and the semantic embedding of model-checkable logics in HOL is

standard [6, 5]. Once one has a representation in higher order logic, then ret)resentations in other formats

should be straightforward to derive.

:_ There is a 'Sugar2e' tool available from NoBug Consulting.

4 ht tp://www.cl.canLac.uk/-mjcg/Sugar/

ht tp://www.w3.org/Mat h/
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2.4 Basis for research

We hope to develop senlanticaIly-hased reasoning and checking infrastructure in H()L to support Sugar 2.0.

and a prerequisit(_ for this is to have a 'gel(ten semantics' to which al)l)li('ation-specifi(' semantics ceil be

t)rove([ e(tuivalent.

We are interested in the (level()t)ment ()f t)ropert.v languages that sut)port data operations and variables rang-

ing over infinite data-tyt)es like nmnbers (e.g. including reals and complex mnnbers for DSP ai)plicatioils).

Some sort of mixture of Hoare Logic and Sugar" 2.{1 is being contemplated. Incrementally developing con-

structs by extending an existing s(,mantics of Sugar" 2.0 is a way to ensure some backward compatibility with

industry-standard language. Also, we might wish to l)rove sanity checking mete-theorem about our extended

language, e.g. that it collapses to Sugar 2.0 when there are no infinite types.

Sugar 2.0 is explicitly designed ti)r use with simulation as well as formal verification. We are interesled

in using the HOL t)latform to experin_eilt with combinations of execution, checking and theorem-proving.

To this end we are thinking about implenlenting tools to transform t)roI)('rties stated in Sugar to checking

autolnata. This is inspired bv IBM's FoCs project 6. hut uses compilation by theorem t)roving to ensure

senlaIltic e(luival('n(:o t)etw(,ell the exe('uta})le (:h(,cker alia the sour('e prol)erty.

2.5 Education

Both semanti(' embedding and property Sl)(_cification are taught as part of the Computer Science undergrad-

uate Collrse at Calnl)ri(lge University, and hcing able to illustrate the ideas on a real exami)le like STtgar 2.0

is pedagogically valual)le. Teaching an industrial property language nicely complenmnts and motivates aca-

demic languages like ITL, UI'L and CTL.

The semantic eml)e(tding of Sugar 2.0 in the HOL system is an interesting case study. It illustrates some

issues in making total flmctional definitions, and the formal challenges attemt)ted so far t)rovide insight into

how to perform structural inducli_m using the t)uilt-in tools. Thus Sugar 2.0 has educational potential for

training HOL users. In fact, the semantics described in this paper is an example distril)uted with HOL. 7

3 Review of semantic embedding in higher order logic

Higher order logic is an extension of first-order predicate calculus that allows quantification over functions

and relations. It is a natural notation for formalising informal set theoretic si)ecifications (indeed, it is usually

more natural than formal first-order set theories, like ZF). _,_ helle that the HOL notation we use in what

follows is sut-ficiently close to standard informal mathematics that it needs no systematic explanation.

We use Church's A-notation for denoting functions: a %mbda-term' like Az. t, where :r is a variable and

t a term, denotes the flmction that maps a value v to the result of substituting v for the variable x in t

(the infix notation x _ t is somf_times used instead of Ax. t). If P is a function that returns a truth-value

(i.e. a predicate), then P can b(' thought of a set, and we write x 6 P to mean P(x) is true. Note that

)_x..-.x... corresponds to lhe set abstraction {x ] ...x--.}. g'o write gx 6 P. Q(x), _x 6 P. Q(x) to mean

Vx. P(3:) =_ Q(:r), 3x. P(x) A Q(2"), respectively.

To embed s a language in H()L one first defines constructors for all the syntactic constructs of the language.

This is the 'abstract syntax' and provides a representation of parse trees as terms in the logic. The semantics

is then specifi(_d t)y defining a semantic function that recursively maps each construct to a representation of

its meaning.

Kor Sugar" 2.0, a model M is a quintut)le (Sl, i, SON, l_,M,Pl,l, LM), where S M is a set of states. S0M is the subset of

initial states, RM is a transition relation (so RM(S, s') means s' is a possible successor state to st, PM is a set

of atomic propositions, and Llq is a valuation that maps a state to the set of atomic propositions that hold

at the state (so Lt4 s p is true ifl' atomic proposition p is true in state st.

ht tp: / / www.haifa.il.i bm.(:om / pr( )j(,('ts / v(_rification / fo(:s /

7 http://cvs.sour(:(,forg(,.net/cgi_bin/vi(,wcvs.cgi/hol/ho198/examl)l(_s/Sugar2/

We shall only be concerned with so (:all(,([ 'deep embeddings' here [2].
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3.1 Boolean expressions in Sugar

The syntax of boolean expressions (range(t over by b, bt, b, etc.) is built fi'om atomic propositions (ranged

ow,r by p) using negation (-,) and conjunction (A):

b ::= p (At()mic fl_rmula)

t -_b (Negation)

I bt A b., (Conjunction)

This is defined in HOL by a recursive type definition of a type that represents tim syntax of boolean

expressions. Other boolean expressions are added via definitions (e.g. see Section 5.3 for the definition of

disjunction: bl V b._,).

Let 1 range over predicates on PN, called "truth assignments" in the Sugar documentation. The semantics

of boolean expressions is given by defining a semantic function B_SEN such that B_SEN M 1 b if true iff b is

buih fl'om propositions in PM and it is true with respect to the truth assignment 1.

If we write (M, 1 _ b) for B_SEM N 1 b then the semantics is given by

(<M, 1 _ p) = p E PN A p 6 1)

A

((N, I _ T) = T)

A

((M, i D _b) = _(M, i _ b))

A

((N, i _ DIAB2) = (N. i _ bl) A (N, i _ b2))

Note that the symbol A is overloaded: the first occurrence in the equation above is part of the boolean

expression syntax of Sugar, but the second occurrence is higher order logic.

Before looking at the full semantics of Sugar 2.0, we first consider a simplified semantics in which there is

no clocking, and paths are always infinite. We consider separately the parts of Sugar _2.0 corresponding m

Interval Temporal Logic (ITL), Linear Temporal Logic (LTL) and Computation Tree Logic (CTL).

3.2 ITL: Sugar Extended Regular Expressions (SEREs)

Interval Temporal Logic (ITL) provides formulas that are true or false of intervals of states. Here we just

consider finite intervals, though recent formulations of ITL 9 allow intervals to be infinite. For Sugar we only

need to consider ITL fornmlas, as there are no constructs corresponding to ITL expressions (expressions map

intervals to values). Providing more elaborate ITL constructs in Sugar strikes us as an interesting research

topic.

The Sugar subset corresponding to ITL is called Sugar Eztended RegMar Ezprcssions (SEREs). If r, r_, r_

etc. range over SEREs and p ranges over the set PM of atomic propositions, then the syntax is given by:

r ::= p (Atomic formula)

[ {rl} I {r2} (Disjunction)

t rL ; r.2 (Concatenation)

] rl : r_ (Fusion: ITL's chop)

I {r_ } && {re } (Length matching conjunction)

] {rl} _z {r2} (Flexible matching conjunction)

}r[*] (Repeat)

The semantics of SEREs is given by defining a semantic flmction S_SEM such that S_SEM M w r if true iff w is

in the language of the extended regular expression r. We write (M, w D r) for S_SEN M w r.

If wlist is a list of lists then Concat wlist is the concatenation of the lists in wlist and if P is some

predicate then Every P wlist means that P(w) holds for every w in wlist.

The semantics S_SEN M w r is defined in HOL by recursion on r.

'_ http: / /www.cms.dnm.ac.uk /-cau /itlhomepage /
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((M, w _ b)=

31. (w = [i]) A (M, I _ b))

A

((M, w _ rl;r2) =

3wl w2. (w = wlw2) A (M. wl

A

((M. w _ rl:r2) =

A

((M,w
_wlist.

rl) A (M, w2 b r2))

3wl w2 i. (w = wl [l]w2) A

(m (wl[i]) _:
A

((M. w b {rl}1{r2}) :

(M, w _ rl) V (M, w _: r2))

A

((M, w b {rl}_{r2}) =

(M, w _ rl) A (M, w _- r2))

A

3wl w2. (w = wlw2) A

(((M, w _ rl) A (M, wl _ r2))

V

((M, w _ r2) A (M, wl _ rl))))

rE*]) =
(w = Concat wlist) A Every (Aw. (N. w

ri) i (M, (If]w2) _ r2))

r)) wlist)

This definition is manifestly primitive-recursive, and so is automatically proved total by HOL [7]. The

intuitive semantics of SERE's is explained in the Sugar 2.0 documentation [8].

3.3 LTL: Sugar Foundation Language (FL)

Sugar 2.0 has a kernel conl|)iniilg standard LTL notation with a less standard abort operation and some

constructs using SEREs. The suffix "!" found on some constrllt'ts indicates that these are 'strong' (i.e.

liveness-enforcing) operators. The distinction between strong and weak operators is discussed and motivated

in the Sugar 2.0 literature (e.g. [9, Section 4.11]).

f ::= p (Atomic formula)

] _f (Negati(m)

Ifl A f2 (ColkjuI_ctioIO

} X ! f (Successor)

I If ! U f2] (Until)

I {r} (f) (Sutfix implication)

I {rl } I-> {r_ } ! (Strong suffix implication)

I {rl } 1-> {r2} {_Veak suffix implication)

I f abort b (Abort)

Numerous additional notations are introduced as syntactic sugar. These are easily formalised as definitions

in HOL. Some examples are given in Section 5.3.

Being LTL, the semantics of FL formulas is defined with respect to a path :r. which (in tit(, simplified

semantics here) is a flmction from the natural numbers to states.

We define a semantic function F SEN such that F_SEM M _r f means FL formula f is true of path _. We write

(M, _ b r) for F_SEMMrc f.

Note that in the semantics bdow it is not assumed that paths ,'r are necessarily computations of N (i.e. satis[v

Path M rr, as defined in Section 3.4). This is important for the abort construct (where the 37r' quantifies

over all paths).
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The notation _ denotes the i-th state in the path (i.e. x(i)); xi denotes dw "i-th tail" of 7r the path obtained

by chopping i eh,ments off dm fl'ont of _r (i.e. _Ti = An. 7r(n+i)); _(i.J! denotes the finite sequence of states

from i to j in _T. i.e. _,i_i+l "'" xj. The juxtaposition x(id)x, denotes the path obtained by concmenating _he

finite sequence x(<)) on to the front of the path 7r'.

The function I_M denotes the point-wise extetision of LM to finito sequences of states (i.e. NAP L M in HOL aim

flmctiona] programming notation).

The definition of F_SEM M _r f is by recursion on f.

((M, _ b

A

((M, _
A

((M, _
A

((M, _
A

((M, ,7
3k. (M,

A

vj. (M,
A

((M, _

b) : (M, LM(r,o) _ b))

_f) : _(M, _ _ f))

liar2) = (M, x _ fl) A (m

X! f): (m _ b f))

Ell U f2]) =

_k _ f2) A Vj. j < k _ (M, _J

{r}(f))=
(f., (_(o,j))) _ r) _ (M, _J _ f))

{rl} l->{r2} !) =

Vj. (M, (ft. (r,(°'J))) _ rl)

=_ 3k. j i k A (M, (tim (nIj,k))) b r2))

A

((M, 7r b {rl}l->{r2}) =

Vj. (M, (f[, (_to.j_)) _ rl)

(3k. j _< k A (M, (fi_ (,_(J,_i)) _ r2))

V

Vk. j J k =_ qw. (M, (fi_ (_!J'_)))w

A

((M, 7r _ f abort b) =

((M, _ _ f)
v

3j _'. (M, ,_J _ b) A (M, _(o,j-_l_, _ f)))

,_ _ f2))

fl))

r2))

In this semantics, paths rr are infinite, as in the classical senmntics of LTL fin" model checking. A version

that also handles finite paths, suitable for evaluation on simulation runs, is given in Section 4.2.

3.4 CTL: Sugar Optional Branching Extension (OBE)

The syntax of the Sugar 2.00BE is comtfietely standard. The syntax of the ()BE formulas is:

f ::= p (Atom)

[-_f (Negation)

] f_ A f2 (Conjunction)

[ EXf (Some successors)

l E[f_ Uf2] (Until ahmg some path)

I EGf (Ahvays on some t)ath)

For tim senlanti(:s, define Path M ,_ to be true iff 7r is a conq)utation of M:
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Path M ,7 = Vn. RM(rr., "/L_,-_)

The semantic flmction O_SEN is defined so that O_SEM M s f is true iff f is true of M at state s. Write

(N, s _ f) for 0_SEN N s f, which is defined by recursion on f by:

((M, s _ b) = (N, LM(s) _ b))

A

((M, s _ -_f) = -_(M, s _ f))

A

((M. s _ liAr2) = (M. s _ fl) A (M, s _ f2))

A

((M, s _ EX f) =

3_. Path M ,_ A (_o = s) A (M, _i _ f))

A

((M, s _ [fl U f2]) =

_. Path M _ A (_o = s) A

(M, _-k _ f2) A Vj. j < k _ (M, _rj _ fi))

A

((M, s _ EG f) =

_,'T.Path M _ A (Tro = s) A Vj. (M, ;rj _ f))

4 Full Sugar 2.0 semantics in higher order logic

The flfll Sugar 2.0 language extends t he constructs described above with the addition of clocking att(t support

for finite paths.

The clocking constructs allow (possibly multiple) clocks to be declared, see Section 4.1. Clocks define when

signals are sampled, so the next value of a signal s with respect to a clock c is the value of s at the next

rising edge of !c.

Simulators compute finite executions of a model, so to support checking whether a property holds ow_r such

a simulation run, Sugar 2.0 defim's the meaning of each construct on both finite and infinite paths.

Adding clocks and finite paths gr(,atly complicates the language, though it is still surprisingly elegant.

We have formalised the full semantk:s of Sugar 2.0 via a deep embedding in higher order logic. Correspond-

inn to Appendix A.1 of the Sugar 2.0 specification submitted to Accellera [9] we have defined tyl)es bexp,

sere, fl and obe in the HOL logic to repres_mt the syntax of Boolean Expressions, Sugar Extended Reg-

ular Expressions (SEREs), formulas of the Sugar Dmndation Language (FL) and formulas of the Optional

Branching Extension (()BE), respectively.

Corresponding to Appendix A.2 of the Sugar documentation we have defined semantic functions B_SEN. S_SEM,

F_SEN and 0_SEN that interpret boolean expressions, SEREs, FL fornmlas an(t ()BE fornmlas, respectively.

Due to space constraints we do not give the semantics here, but full details are available on the web at:

http: / /www.cl.cam.ac.uk / -mjcg/S ugar

The semantics is evolving and we. holm to keel) the HOL version up to date with respect to the official version.

In the next two sub-sections we discuss clocking and finite paths.

4.1 Clocking

If b is a boolean expression, then the SERE b_c recognises a sequence of states in which b is true on the

next rising edge of c. Thus b©c behaves like {-_c[*] ; c A b}.

More generally, if r is a SERE and c a variable then r©c is a SERE in which all variables inside r are clocked

with respect to the rising edges of c.

The semantics of clocked SEREs can be giw'n in two ways:
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1. by makinga clockingcontt,×tpart of the semanticfunction,i.e. defining(g, w _ r) insteadof the
mMocked(M,w _ r):

2. })ytranslatingclocked SEREs into unclocked SEREs using rewriting rules.

With the first al)t)roa(:h (1). which is taken as th(' definition in the Accellera report, on(_ d(_films

(M. w _ b) =

3n.n> I A

(length w = n) A

(Vi. i _< i A i < n _ (M, wi i _ -_c) A

(M. wn t _ cab)

r©ct) (M, w r)(M, w

togetimr with equations like those in S(_ction 3.2, but with _ replacing _. Noti('e that an inner clo(:k ov(,rrides

an outer clock (i.e. cl is us(,(t to clock varial)les inside r in r©cl: the oh)ok (:ontext c is overridden by cl

inside r).

The second apl)roach (2) is to translate clocked SEREs to unclocked SEREs using rewrites

b©c _ {-_c[*]; cab}

{ri;r2}©c _ {rl©c};{r2©c}
{rl:r2}©c ---+ {rl@c} :{r2©c}

{{rl} I{r2}}©c ---+ {rl©c} I{r2©c}

{{rl}&&{r2} }©c _ {rl©c}_&{r2©c}

{{rl }&{r2}}©c --4 {rl©c}&{r2©c}

r [*]©c ---4 {r©c} [*]

r©cl©c ---4 rllcl

these rewrites cannot be taken as equational definitions, [rot need to he applied from the outside in: e.g. one

must rewrite b©cl©c to b©cl (eliminating c) rather than rewriting the sub-term b©cl first, resulting in

{_cl [*] ; clAb}_c. \\k' have proved the two semantics for clocking SEREs are equivalent, see Section 5.3.

One can also clock formulas, f©c, and there may he several clocks. Consider: m

G (req_in -> X ! (req_out©cb)) ©ca

this means that the entire formula is clocked on clock ca, except that signal req_out is clocked on cb. Clocks

do not "accumulate', so the signal req_out is only clocked by cb, not by both clocks. Thus cb 'protects'

req_out from the main dock, ca, i.e.:

req_out©cb©ca = req_out©cb

As with the clocking of SEREs, this meaning of clocking prew_nts us simply defining:

req_out©cb = [-,cb U (cb A req_out)]

since if this were the definition of req_out©cb then we would })e forced to have:

req_outOcb©ca = [-_cb U (cb A req_out)]©ca

when w(_ actually want

req_out©cb©ca = req_out©cb

Thus, as with SEREs, we cannot just rewrite away (:locking constructs using equational reasoning, but if

one starts at the outside and works inwards, then one can systematically compile away clocking. The rules

for doing this are given in the Sugar 2.0 Accellera documentation as part of the implementation of formal

verification [9, Appendix B.1]. "_ are currently in the process of trying to validate the clocking rewrites, see

Section 5.3.

l0 The discussion of (:h)cking here is based on email communication with Cindy Eisner.
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The otficial semantics uses the approach like (1) above of having the currentl.v active clock as an argument

)o tlt(, semantic function for formulas. In fact two semantics are given: ono fin 'weak' clocking and one for

'strong' clocking. The weak clocking is sp(,cified in H()L t) 3, defining

and the strong clocking l)y detinin_

We shall not give the cOral)let(' semantics here (tlmy are availabh, on the web). but just show the semantics

of boolean exl)ressions b:

((M, _ _ b)=

Vi6plTr. (M, (LM (7(o.i))) -_c[*];c) _ (M, LM(Tri) _ b))

This says that ff there is a first rising edge of c at time i, then b is true at i.

((M, _r _! b) =

_i 6 ply. (M, (ft, (Tr(°.i))) -_c[*];c) A (M, L,(_'i) _ b))

This says that th.ere, is a first rising edge, and if it occurs at time i, then b is true at i.

Thus the strongly docked semamics aSsllnles the clock is 'live', but the weakly clocked semantics doesn't

(compare the concepts of total and partial correctness).

4.2 Finite paths

Sugar 2.0 gives a semantics t() formulas for both finite and infinite paths. To represent this. we model a path

as being either a non-empty II finite list of states or a function front natural mnnbers to states and define a

predicate finite to test if a path is a finite list. The flmetion length gives the length of a finite path (it is

not defined on paths for which finite is not true).

We interpret the official semantics h)cution

"for every j < length(rr): ... 2 '" "

as meaning

"for every j: (finite 7r iml)lies j < length rr) implies ... j --."

and we interpret the official semantics locution

"there exists j < length(Tr) s.t. -.. j ..."

as meaning

"there exists j s.t. (finite _r implies j < length ,7) and --, j .-."

Define pl 7r n to mean that if rr is finite then n is less than the length of _, i.e. the predicate pl is defined by

pl _ n = finite _ _ ;_< length

%%_ can then write "Vi £ pl ,T.... i ---" and "_i E pl _..-- i --." for th(' locutions above. The name "pl"

is short for "path length"

Here is a version of the unch)cked FL semantics that allows paths to be finite.

((M, _T _ b) = (M, L.(7o) _ b))

A

((M, _ _ _f)= _(M, _ _ f))
A

((M, _ _ liar2) = (M, _ D fl) A (M. _ _ f2))
A

((M, _ _ X!f) = pl n I A (M, _ _ f))

I, The need for finite paths to be non-empty arose when trying to prove some l)rot)erties. This requirement does not

seem to be explicit in th(, Acc(dh'ra specification.
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A
((M, _ _ [fl U _2]) =

_k E pl _.

(M, _k _ _2) A VjEpI_. j < k _ (M, _J _ fl))
A

((N, _, # {r}(f))=

Vj EplTr. (S, (_M (TrI°Jl)) _ r)=> (S, _J _ f))

A

((M, _ # {rl}(->{r2}!)=

Vj E pl_v. (M, (tim (77{0'J))) _ rl)

3k Epic. j < k A (M, (LM (_(j.kl))

A

((M, z_

Vj e pl_.

Vk 6 pl_.

A

((M, _T _ f abort b)=

((M,_ _ f)
V

3j E pl ,_.

0 < j A 3_'. (M, 7Fj

r2) )

{rl} I->{r2}) =

(M, ([_. (_(od))) # rl)

(3kE pl,_. j < k A (M,

V

j _<k_ 3w.

b b) A (M, 7rI°'J-ltTr ' _ f)))

r2) )

This semantics has evoh,ed from an existing unpublished seInantics m of unclocked FL formulas.

5 Progress on analysing the semantics

We have established a mlmber of properties of the semantics using the HOL system. Some of these went

through first time without any problems, but others revealed bugs both in the Sugar 2.0 semantics and

original HOL representation of the semantics.

5.1 Characterising adjacent rising edges

Define:

FirstRise M _ c i = (M, (tiM (7r(°'i))) _ _c[*];c)

NextRise M 7r c (i,j) = (M, (tim (7r(i'J))) F -_c[*] ;c)

The right hand sides of these definition occur in the Sugar 2. 0 senmntics. We have proved that the definitions

of FirstRise and NextRise give them the correct meaning, nmnely Firs%Rise g 7r c i is true iff i is the

time of the first rising edge of c, and NextRise M _r c (i, j) is true iff j is the time of the first rising edge

of c after i.

FirstRise M _ c i =

(Vj. j < i _ -,(M, LM(_j) _ c)) A (M, LM(_ri) _ c)

i<j

(NextRise M _ ¢ (i,j) =

(Vk. i <_kAk < j _ _(M, LM(Trk) _ c)) A (M, LM(Trj) _ c))

12 Personal communication from Cindy Eisner.
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Th(,proofof thos(,woreessentiallyroutine,thoughqzfitea bit moretrickythan('XlJ('cte(t.Immediatec(Jz'ol-
lariosare

FirstRise M _ T i = (i = (1)

i _<j _ (NextRise M 7rT (i,j) = (i = j))

5.2 Relating the clocked and uncloeked semantics

If we define ClockFree r to mean that r contains no clocking eonstru('ts (a simple recursion over the syntax

of SEI_Es), then clocking with T is equivalent to the unclo(:ked SEI_E semantics.

b Vr. ClockFree r _ ((M, w _; r) -- (M, w _ r))

The in'eel of this is all easy st ructural in(luction, and shows that when the clock is T. the ('locked semantics

()f SEREs collat)ses to the semanti('s in Section 3.2.

We tried to l)rove a similar result for FL formulas, but at first this turned out to t)e impossihle. The reason

was that tit(, l)roof required first showing

However, the original semantics had the following:

¢,(M, 7r b) = 3i. FirstRise M 71 c i A (M, LM(Tri) _ b)

(M, 7i" ¢ b) = _i. FirstRise M 71 c i _ (M, LM(Tri) _ b)

Instantiating c to T and using the corollary about FirstRise yields

(M, Ir " b) = _i. (i=0) A (M, LM(Tri) _ b)

(M, _r _ b) = 3i. (i=0) _ (M. LM(_i) _ b)

With this, clearly (M, 7r b) is not equal to (M, w " b). The solution, suggested by Cindy Eisner, is to

replace the weak senlantics by

(M, _ ¢ b) = Vi. FirstRise M 7r c i =:_ (M, L_(rri) _ b)

so that w(, get

(M, ;r _! b) = 3i. (i=O) A (M, LM(_i) _ b)

(M, rr b) = Vi. (i=O) _ (M. L_(rq) _ b)

which makes (M, rr _ b) equal h, (M, rr _! b). The same change of 3 to V is also needed for the sen,antics of

weak clocking for fl A f2, X! f, {r}(f), {rl}l->{r2} and f abort b. With these changes, we used structural

induction to prove: 13

However, we were still unable to prove

_- Vf. ClockFree f _ ((M, rr _ f) = (M, 7r _ f))

where here ClockFree f means that f contains no clocked FL fbrmulas or SEREs. The proof attempt failed

because the mmloeked semantics for [fl U f2] had a path length cheek, but the strongly clocked semantics

didn't. After restricting tile quantification of a variable in the slrongly clocked semantics to vahles satisfying

pl _, the proof went through.

la See Se(:tion 5.4 for further deveh)ptnents!
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5.3 Validating the clock implementation rewriting rules

As discussed in Section 4.1, the semantics of clocked SEREs and fornmlas can be given ill two ways:

1. t)v defining _ and, for %rnmlas, #!;

2. by translating away eh)(:king constructs r©c, f©c and f©c! using rewrites, then using the mMocked

semantics _.

The representation in HOL of the direct semantics (1) has already been discussed.

The definition of file translation (2) in HOL is straightforward: one just defines recursive flmctions SClocklmp,

that takes a clock and a SERE and returns a SERE, and FClocklmp that takes a clock context and a formula

and returns a fornmla. Thus roughly 14

SClocklmp : clock -+ sere -+ sere

FClockImp : clock --_ fl -+ fl

We can then altempt to prove that

F- Vr w c. (M, w _ r) = (M, w _ SClockComp c r)

which turns out to t)e a routine proof by structural induction on r. However, the results for formulas

_- Vf rr c. (M, rc # f) -- (M, rr _ FClockComp c f)

Vf _ c. (M, _ #! f) ----(M, _ _ FClockComp c! f)

are harder, and we have not yet finished proving these (as of 5 July 2002). To see the complexity involved

consider the rewrite for weakly clocked conjunctions [9, page 67]:

(fl A f2)©c ---+ [_c W (c A (fl©c A f2©c))]

where W is the 'weak until' operalor which is part of the definitional extension (i.e. syntactic sugar) defined

as part of Sugar 2.0, namely:

ill W f2] = ill U f2] V G fl

where U is a prilnitive (part of tile kernel) but V and G are defined by:

fl V f2 = -_(_fl A -_f2)

C f = -_F(_f)

and F is defined I)y

Ff = [TU f]

Let us define

FClockCorrectM f = (V_ c. (M, _ _ f) = (M, _ _ FClockCompc f))

A

(V,'r c. (M, rr --_! f) = (M, 7r # FClockComp c! f))

It is relatively straightforward to prove the cases for boolean formulas b and negations -,f, namely:

F VM. FClockCorrect M b

VM f. FClockCorrectM f _ FClockCorrect M (_f)

For formula conjunction we want to prove:

VM fl f2. FClockCorrectM fl A FClockCorrect M f2 _ FClockCorrect M (liAr2)

where the first A is in higher order logic and the one in fl A f2 is part of the Sugar fornlula syntax.

14 \Ve are glossing over details here, like what the type clock exactly is.
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We got hogged down in details when we tried to prove this direct[y, so we first estahlish(,d some lemmas

about V and the unclocked semanlics of the defined operators W. G and F.

' (M, 7r _ flY f2) = (M, ,7 _ ¢1) V (M, _ p f2)

F-(M, rr

_- (M, Tr

}- -,(M, r,

-_(M, _ A VjCpi;. j<i _ (M, ,_J p f)

Using these lemmas it is not too hard to prove the desired result about conjunctions. Besides helping with

the proof of this, the lemmas also provide some sanity checking of the definitions.

b F f) = _i_pi_ (m _ D f)

G f) ---- Vi6pl:. (M, w ]- _ f)

a f) = _i E pl_. (M, 7Ti _ _f)

b G f) : _iCpl_. (M, _r_ _ _f)

5.4 Restricting quantifiers

The original semantics stratifies that some of the quantifications over integer variables be restri(:ted to range

over values tim are smaller than _he length of the current path 7r (we represent this using pl _). Our initial

attempts to relate the clocked and unclocked semantics needed additional quantifier restrictions to he added.

as discussed at the end of Section 5.2 above. Howev(_r, during email discussions with the Sugar 2.0 designers

it became clear that in fact all quantifieations should be restricted, for otherwise the semantics wouht rely

on the HOL logic% default interpretations of terms like 7rJ when 7r is finite and j > length 7r. _'_ With

HOL's default interpretation of 'meaningless' terms, it is unclear whether the semantics accurately reflects

the designers intentions.

Thus the semantics was modified so that all quantifications are suitably restri(:ted. In a(hliti(m, an(t in the

same spirit, we added the requirement that all terms _r(i'a) occurred in a context where i <_ j, so that the

arbitrary value of T((i'j) when i > j was never invoked. Unfortunately these changes broke the proof of:

_- Vf w. (M, w f) = (M, 7r " f)

and hence the proof relating the clocked and unclocked semantics. However, it turned out that there was a

bug in the semantics: "1 > k" occurred in a couple of place_s where there shouM have been "1 > k", and

when this (:hange was made the t)roof of the above property, and the equivalence between the uneh)eked and

true-docked semantics, went through.

However, just as we thought ev(,rything was sorted out.. the Sugar 2.0 designers announced the), had dis-

covered a bug and pointed out that without their fix we should not have been able to prove what we had.

This 1)ug had arisen in the semantics of X! formulas when the _-to-V change to the weakly clocked semanti(:s

(which we discussed in Se(:tion 5.2) was made.

Careful mamml analysis showed that all error in the HOL semantics had been introduced when the _-to-V

change was made, and this error masked the bug that shouht have appeared when we tried to (to the proof.

Thus a bug in the HOL semantics allowed a proof to succeed when it shoul(hft have! After removing the

transcription error from the H()L semantics the preen failed, as they should, and after the (:orrect fix.

supplied by the Sugar (lesigners. was made to the semantics the proofs went through.

This experience with a transcription error masking a bug has sensitised us to the dangers of maimally

translating the typeset semanti<:s into HOL. '_\_ had careflfily and systemati<:ally manually checked that

the HOL was a correct mo_e than once, but nevertheless the error escaped detection. As a result, we are

experimenting with wa.vs of structuring EvI'EX source to represent the 'deep structur(,' of the semantics rather

than its 'surface form'. The idea is t<) defim, LATEXcommands (macros) that are semanticall.v meaningful and

can be parsed directly into logic with a simple script. The LxTEX definitions of the commands will then

_5 The logical treatment of 'undefined' terlns like 1/0 or hd[] has been lnul:h discussed. HOL uses a siinple and

consistent approach based on tlilbert's a-operator. Other apl)roaches include 'free logics' (i.e. logics with non-

denoting terms) and three-vahl_,d [ogi(:s in which formulas ('an evaluate to true, false and urtdefined.
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generate the lmiflication fornl of the semantics. By giving the eonunands extra paranmtcrs that can be used

lo hohl strings for generaling English, but ignored when translating t.o ttOL, il al)pears possit)le to use E_,T_N

to represent the semanti('s. However. the resulting document source is rather complex and may be hard to

maintain. The long term 'industry standard' solution t.o this problem is to use XML (e.g. MathML), but

(:tlrrent illfrastructur(' for MaIhML is eithe," not quite ready (e.g. Publicon ul) or not quite polished enough

for everyday use {e.g. IBM texexplorer iT, Mozilla TM and TtM 19)

6 Conclusions

It was quite straightforwar(t to use the informal semantics in the Sugar 2.0 (toeumentation to create a dee I)

embedding of the whole Sugar 2.0 kernel. Attempting to prove some simple 'sanity checking' lemmas with

a proof assistant quickly revealed bugs in the translated semantics (and t)ossil)ly in the original). Further

probing reveale(l more bugs.

It is hoped that the semantics in HOL that we now have is correct, but until further l)roperties are proved

we cannot be sure, an(t the experience so far suggests caution!
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Abstract. \Vith the (-oiltilmmg growth of computer systems including safety criti('al COml)uter control

systems, the need for relial)h, tools t<) hell) construct, analyze, and verify such systems also c<mtinues

to grow. An example of such a tool is DOVE [1, 2I. ()tie of the advantages of D(')VE is that it combines

the ease of use provide 1)3"a gral)hical user interface for descril)ing sl)e('ifieati(ms in the form of finite

state machines with the rigor of proving linear temporal logic properties in a rol)ust theorem prover.

Isabelle [5]. In the Work described in this pal)er we increase the utility of DOVE bv extending it with

tit(' capability to build systems by spe(:ifying COml)onents.

1 Introduction

The need for effective assuran(:e in the design of critical systems e(mtimms to grow as our dependen(:e on

such systems continues to sl)read and grow. In many ('ases, death or injury can be easily caus_d by any

faults in these eriti(:al systems, such as safety (:ritieal systems. To try to address this need. there is a growing

variety of formal methods tools. These tools are based on a variety of differing underlying methods. To be

used outside the research coninntnity, such a tool must t)e fairly easy to use, and usually would require a

graphical user interface. The aim of the Design Oriented Verification and Evaluation (DOVE) [1,2], which

was designed by the Defense Science and Technology Organization (DSTO) in Australia, is to provide a

powerful tool to meet this challenge.

DOVE comprises three main components: the graphical e(titor for drawing finite state machine as spec-

ifications of systems, the animator for exploring various execution paths, and a prover, built on Isabelle

[5], for verifying temporal logic properties of state machine. DOVE combines the ease of use afforded by

a graphical user interface, an(t the rigor afforded by, formalizing and proving properties of a system in a

theorem prover. The ability to model a system using the graI)hical editor substantially speeds the pro('ess

and increases the confidence ]ev_,], when compared to describing the system as expressions in a language.

The ability to visualize the graph is an early aid to catching simple but important mistakes. The ability to

explore sample executions through animation helps the user to deepen his understanding of state machine

and to do a limited degree of test ing. The highest degree of assurance is provided by stating and proving the

needed properties of the systenl using the prover.

There are lirnitations to the use of a graphical editor once the system begins to get large. It is difficult to

comprehend, let alone draw, a system that has in excess of one hundred nodes. Programming languages have

used modules as a technique for controlling the complexity of systems. The purpose of the work discussed in

this paper is to extend DOVE with the ability to build systems by composing them from simpler component

machines.

2 Overview of DOVE

DOVE is primarily a tool fi)r producing high assurance system designs. It t)rovides tools for constructing,

presenting and reasoning about t;)rmal design-models. DOVE is built in layers with a graphical user interface

that is used for constructing and examining the design-models, and an underlying layer using the theorem

prover Isabelle. The graphical interface of DOVE is written using Tcl/Tk script language. Isabelle is built

in the fimctional t)rograinming language ML, and the proof is carried out by Isat)elle.

• This work was supported by AIR() Contract Number: DAAD-19-01-1-0473.



102 ElseL.Gunter and Yi Meng

DOVE uses a state-machine nlechanism to model the specification of systmn behavior. A state machine

in DOVE introduces the notion of a menlory at each state, which is updated by each consecutive transition

which describes how to evoh,e between stales. The state machine graph consisted of nodes and edges which

represent states aud transitions. Tiler(, must be at least one node in the state nlachine aud exactly one node

to be defined as the initial state. Each transition has three parts: Let, Guard and Act. The Let part is used

to simplii_v the other two parts of the transition definition. The transition is only performed if tile guard

is satisfied ill the correct menlory. The Act. referring to action, defines how the memory is changed by the

transition (whMl only can occur when tit(, transition is performed).

In addition to the visual inspection that the graphical interfaces allows. DOVE provides two other nlech-

anisms for analyzing system designs, nanlely aninlations and verification. Aninlation in DOVE begins by

setting initial vahtes for the heap variables (i.e. setting the initial menlory), and then is carried out by click-

ing edges of the state machine graph and calculating new values for the heap variables in accordance with

the the corresponding transition definition. This symbolic feature provides a useflfl way to check whether all

variables are updated as expected and whether the transition, which is protected by the guard definition, is

performed correctly. However, the animation only gives a simple assurance of correctness of the design of the

state nlachine. A higher level of assurance can be gained by proving whether the design satisfies the given

requirements.

Verification in DOVE provides powerful facilities to express properties and to prove the systenl satisfes

system requirements. The system requirements nmst be translated from informal English into a particular

version of linear temporal logic supported by DOVE. DOVE then provides a collection of proof rules and

tactics specialized for proving these linear temporal logic properties.

g'e have applied the DOVE tool to sonle medium-sized critical systems. The precise details of those

applications are not relevant to this paper and are not included here. However, we will include a brief

exmnple motivated by our application as an illustration of some of the features of DOVE, and the linlitation

we wish to address here. The example system is intended to monitor the behavior of another device. The

example system consists of two components: a component for nlonitoring whether the device is plugged

in and receiving adequate power, and a component for monitoring when the device is adequately powered

whether it is producing values within an acceptable range.

Figure 1 shows a screen snapshot of the DOVE calPcas for the Plughl Monitor conlponent of the system.

The gridded canvas is the DOVE state machine window which is used for designing the inachine. The three

nodes representing the three states in the Plugln Monitor model are Wait, CheckPlugin and CheckUnplug.

The edges with appropriate labels are transitions between these states. Several variables are needed. The

hea I) variable Pluggedln represents whether the machine is plugged in. the input variable Volt is supplied by

the environment and is nlonitored to trace when the device is properly plugged in. Finally, an initial state

Wait should be defined in which the machine is unplugged.

The system checks whether the device is plugged in before going from Wait to CheckPlugln mode. \_

have variable \'()It as tile guard for the three transitions: Plugln, Unplug and RePlugin. At each transition, if

the guard conditions are meet, the corresponding transition will be taken, and the variables will be updated.

In the initial state, if the device is plugged in and receiving a voltage greater than 10 volts, the transition

Plugin will be taken and Pluggedln will be set to true. The plug monitor will stay in the CheckPlugin state

unless the voltage drops below 9 volts. In that case, it will enter CheckUnplug state and Pluggedln will

be updated to false. Once the device is replugged in and receiving more than 10 volts, it will reenter the

CheckPlugin state. The nlonitor it will keep running in this loop indefinitely. Here, the Plugln Monitor is

correctly and clearly modeled in DOVE.

However, the PlugIn Monitor is just a simple exmnple of modeling a system. Life is not always so easy.

When dealing with a bigger project in which sonle models with interaction with each other, some problem

comes up. Tile ValueOk monitor is a conlponent in which the variable ValueOk shows the status of the value

variable. The state machine of Value Monitor is showed as Figure 2. The three states Wait, CheckValueOk

and CheckValueFault are defined in the Vahle Monitor state machine. Six transitions connect these states

and update variables if the guard of the transition is satisfied.

In the initial state of Wait, once the variable PluggedIn becomes true, the variable Vahu,()k will be set to

true. The device will enter CheckValueOk state. This can happen in one of two ways. When the system being

monitored first starts up, the PlugIn Monitor and the Value Monitor synchronize on beginning to nlonitor
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Fig. 1. A simple plug monitor in DOVE
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Fig. 2. A monitor for checking values in DOVE
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their states. Thereafter, if the, t)ower drops below a certain threshold, then the Value Monitor returns m

its Wait state, and reenters (!heckValueOk when it detects that the Plugln Monitor has determined that

the power has retm'ned to an acceptable level. Once in the ChecVahmOk state, if the input variable Test is
shown to be below 5, Value()k is set to false, the device will enter the, CbeckValueFault state. If variable Test

is set back to greater than 5. Val_le()k is set back to true. and ;he CheckVahleOk state will br reentered.

In both CheckVahu,Ok and ('heckValueFault states, if the device is unph2gged, th(' device will go back to
initial Wait state.

Between these two models, the ValueOk Monitor uses the PluggedIn variable, which is written by the

PlugIn monitor, as an input variable. Unfortunately, with the current DOVE tools, these two interactive

conlpollents could not be composed into one single model. In order to conquer this. we need to extend

DOVE with product autonlala.

3 Formal Definitions of Automata and Products

In this section we will give a t'(_rmal definition in higher-order logic of tit(, type of finite state automata used

in DOVE, their semantics of execution, and how we extend this with product automata.

3.1 Finite State Maehines

Informally, a finite state ma('hino is a tuple of a set of states, a set of labeled transitions, and an initial

state. In DOVE, the states are augmented with metnory when executed. A transition is a directed edge

between a pair of states tout)led with a guarded action to be committed when that transition is exeeut(,d.

The transition may be executed only in the case that the guard holds in the memory of th(, originating state

of the transition, and in which ('ase the action yields the memory of the terminating state. Memory is an

association of values to variahles. The guards are expressed as t)rot)ositions over the variables in the memory.

and the actions are expressed as assignments of values (given as expressions over the memory's variable) to
those variables.

This notion of finite state m_chine (or automaton) is similar to those discussed in the literature, and a

typical example can be found in Chapter 4 of [4]. One way in which DOVE extends this notion is by segre-

gating the variables into two categories, in which DOVE are referred to as intmt variables and heap variables.
Input variables are read-only in that no transition may alter their values. Their vahles are considered to t)e

supplied hy the environnmnl. As such, when (tefining an (_xeeution, we must assume that their values ma.v

change at any point during a se(tu(mce of transitions. While this is manife.st in the proof rules in Isabelle for

proving temporal formulae ti)r s_ate machines defined in DOVE, it is a subtle point which (:omplicates the

definition of an execution and warrants highlighting.

When a user defines a finite state machine in DOVE, the.,," do so using a graphical user interface. This is

used to generate a description in Isabelle of the finite state machine and properties that the user wishes to

prove. This description of the finite state machines in Isabelle is a shallow embedding in the sense that the

variables of the finite state machine are modeled as variables, as opposed to introducing a separate syntax
for variables (in the form of a distinct type of variables). Such a light-weight embedding is advantageous

when the goal exclusively is proving properties in the model. However. it limits the ability, to express recta-

properties in the logic, such as stating what a finite state machine is. or what the product of two fnite state

machines is. Tlmrefore, in this section, we will adopt a deeper eInbedding. The definition we will give has
been rendered in higher-order logic. However, as in the informal description at)eve, it is des(rat)It to express

things using set-theoretic notation. In all formal definitions below, such set-theoretic notations should t)e

interpreted as using a standard rendering of naive set theory in higher-order logic, such as one given by sets

as predicates.

In attempting to formally d(_fine what a finite state machine is, we have to decide how to represent the

writable variables versus the read-only variat)les. Our ultimate goal is to define a produ('t for composing

automata, and in such a composition variables which may be read-only in one component may need to be

writable in some other. Theref(_re, we will represent these two ('lasses of variables as disjoint subsets of a

single type of variables. For our purposes, the precise type used for representing variables does not matter.

so we will use a type variable f,)r this, allowing it latter to be specialized to integers or strings or perhaps
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someothercomt)lexstructure.Havingmadethischoice,wewill needt.obeablem expresstherequirement
on transitionsthat theyonlyinvolvethevariablesassociatedwith theparticularfinitestatenlachine.We
will capturethisnotionof restricteddependenceby the following definitions:

same_on dora f 9 = V x.x E dora, _ (f _: = 9 x)

That is. two flm('tions are the same on a given (tomain if they have the same values on all elements of that
domain.

f only_depends_on .s= V ml 'm_. same_on s m_ m2 ::_ (f ml = f m.,)

A function on functions only depends on a subset s if it always returns the same value when applied to
fimctions that are the same on s. The motivation for this definition is that our memories are flmctions

assigning values to variables, but the guards and actions are only allowed to depend on that part of the

memory that corresponds to the writable and read-only variables.

A transition is well-formed with respect to a set of writable variables and a set of read-only variables

provided that the guard and actions depend only on the union of the writ able and the read-onl.v variables.

and the action does not assign any new values to the non-writable variables.

is_transition (state1, state2, guard, aetioll ) writable_vars read_only_var.s =

guard only_depends_on (writable__ar.s U read_only_vars) A

action only_depends_on (writable_t;flrs U read_only_vat's) A

V memory ear. (-_(var E writable_vars))

(action memory var = memory far)

We are now in a position to give a formal definition of a finite state nmchine:

isJsm (states, labeled_transitions, writable_vars, read_only_vars,

initial_state, initial_condition) =

(writable_v_rs N read_only_vats = O) h

(V ((sl, s2,9, a), l) E labeled_tr(msitions.

is_transition(s1, s.), g, a) writable_vars read_only_vats A

sl E states A s.2 E states) A

(V (tl, II ) E labeled_tra_sitioTts.

(V (t.2, l.,.) E labeled_transitions.(It = 1.2) _ (tt = t.))))
initial_state E states A

initial_eo_tditio_ only_depends_on writable_vars

A tuple of states, labeled transitions, writable variables, read-only variables, initial state, and initial condition
is a finite state machine if

- the writable variables and tile read-only variables are disjoint,

- tile transitions are well-formed with respect to the writable and read-only variables,

- the start and end states of each transition are among the states of the machine,
- each transition label occurs at most once
- the initial state is one of the states of tile machine, and

- the initial condition only depends on the writable variables.

3.2 Executions

Up to now we have defined what it; means to be a finite state machine; we have in effect described its syntax.

We are still left with describing how to execute a finite state machine; that is, we are left with describing its
semantics. The semantics of a finite state machine is the set of all its executions. So what is an execution?

hfforraally, it is a sequence of moves through the finite state machine starting from a memory that satisfies the
initial condition of the state machine, and then follows consecutive transitions. More formally, an execution

is a pair of initial memories and a sequence of pairs of labeled transitions and resulting memories, where the
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start state of each transition is the end state of the previous transition and each transition is enal)led by the

previous memory. However, this is not a e(mq)lete descriptiolL We need to be nlore l)recise about what we

mean by "resuMng memories" and "enabled by tit(, previous memory".

Dove is only capable of dealing with properties that at'(, provable in finite time (safi'ty properties), so we

will use lists fiJr sequences. It wohl not be flmdamentally different if we extended to both finite and infinite

sequences.

For the sake of rea<lability, we shall make a couple of short <lefinitions.

(last_state iT_itiM_'tatc [] = initial_stnte) A

(last_state initiM_tate (CONS (((sl, s_, 9, a), I), memor!l) :: s_'q) = s2)

The last state in a list of pairs of labeled transitions and memories is the initial state if the list is empty,

and otherwise is the end staw of the transition fit the head of the list.

(last_memory initial_Tin'mot9 [ ] = initiM_mcmorfl) A

(last_state h_itial_memor9 (CONS (((s_ _ s2, fl, a), l), mcmor.q).seq) = memory)

The last memory in a list of pairs of labeled transitions and memories is the initial memory (for the intended

execution) if the list is empty, and otherwise is the memory at the head of the list.

An execution in a finite stale machine starting from an initial memory is a list of pairs of labeled

transitions flom the finite state machine and memories such that

either the list is empty or

• the tail of the list is an execution

• the last state of the tail of the execution is the start state of the next transition

• the guard is enabled in some memory that is the same as the previous end memory on the writahle

variables (we allow the read-only variables change) and in that memory we execute the action to

acquire the new lnemory.

is_execution (states, transitioT_ s, writable_'rar._', read_or_ly_rars.

initial_state, initial Jw_dition ) i_itial_memor.q co_ f igJi._'t =

is_fsm( st(_tes, lransitioTls, u,ritable__ars, read_oldy_vars,

i_itial_st(#e, initial_('ot_ditiol_ ) A

i_dtial_eorlditior_ initial_rnemor!/A

((cor_fig_list = []) V

(S sl s.e guard action l memorfl tail_seq.

(configJist = (CONS (((sl, s.,,, guard, actio77), I), memorg)tail_seq)) A

is_execution tail_seq A

((.sl , su, guard, action), I) E transition,s A

(last_state initial_state t_il_seq = s2) A

(3 rneln, same_on writable_var's Inent

(last_memory initiM_state i_titial_memorfl tail_seq) A

guard mere A

actior_ rneTn = memorfl

l,Ve do not intend to go illtO the details of the particular linear temporal logic used in DOVE in this

paper, but briefly a finite state machine is said to satisfy a given linear temporal logic formulae provided

every sequence of memories derived froin the executions of the finite state machine satisfies the fornmlae.

3.3 Product Automata

Having defined the syntax and semantics of finite state machines, we are in a position to give the definition

of the product of two finite state machines. Using the labels on the transitions, our product will allow

synchronization of transitions having the same label. The states of the product is the subset of the product

of the states that occurs in the set of transitions of the product (together with the product of the two initial
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states, if it is not already there). The transitions are effectively the merging of those transitions from the two

amomata that have the same label, unioned with the remaining transitions lifted to the product states. We

have to take a little <:at'<' to generate distinct new labels for the transitions. The writable variables are just the
uni<m of each set of writable variables. The readable variables are the union of each set of readable variables,

minus any that are in the union of the writable variables. The product aut<mmton will only be defined in the

case where the writablc variables of ea<'h are disjoint. The variables that are in the intersectkm of the union

of the writable variables and the union of the readable variables are those that are communicating values

between the automata. The initial state is just the product of the two origin initial states, and the initial

condition is the intersection of the original initial conditions.

Let tlw states of ;-1transition be its start state and its ending state.

statesof ((._ttltcl, .st_te 2, gtmrd, (wtion ), lid)el) = {.state], .state._, }

The product is defined as

IUtr(tYSl A It!lraY.q 2 _ _

fsm_prod (states1, tr(msitionsl , me_wsl , rrm'sl , init_.statcl , init_crm.da )
(states.,, transitioTt,s2, u_ar.s2 , rvar s.2 , init_state.,, inil_eond2 ) =

let prod_tran.s =
g t{(((st..,_._,) (.,4,,. ,_,),(Am.g, n, A .qen,), al o _.2). (1, NONE NONE)) I

(("_1, 'stl, gl, al )_ l) E lr(msition,sa A
((s,,, s', 9"2,a2), l) E t'r,'n._'ition.s,2 }U

{ (((,'q, s:e), (*'_, .'_2),9, a), (/, NONE, SOME s2)) I
(s,, "_'l,9, a) • transitionsl h _3 t.(t, I) • transiticms2 }U

{(((R, ,'q2), ("gl, 'q2), if, Q), (/,SOME s,, NONE) I

(,s'2, s_, 9, a) • tran.s'itions2 A _ t.(t, 1) • transition,s1 }
and

prod_states = {(init_state_ iT/t_.state._,)} U U statesof t
tCprod_trans

in

(prod_states, prod_trans, u'varsl U wvars.e,
(rvarsl U rvars2) - (wvarsl U wvars.2), (init_statel,init_state,,),

k m.init_cond_ m A init_cond.2 m)

It follows from this definition that the product of two finite state machines is again a finite state machine,

provided their writable variables are disjoint. Note that if the writable variables the first automaton are

disjoint from the second automaton, then aa oa2 = a., Oal (for all al and a2 in the definition of the transitions

in the product automaton above). Therefore, the product, of two automata in one order is isomorphic to the

product in the other order.

Given an execution sequence, we can project that execution sequence to an execution sequences of of

each of the component automata.

(projl (states_, tran.si , wvarst , rvar,sl, init_statel, init_condl ) [] = []) A

(projl (states1, trans l , wvar s l , r'_,ar s _ , init_state _, in.it_eond_ )

(CONS ((t, 1), mere) tail_seq) =

if 9 t'. (t',l) • trans_

then CONS (((choose t'. (t', l) • transl ), l), mere) (proj_ tail_._eq)

else proj_ tail_seq

We can prove that if a given initial memory and sequence of transition-memory pairs is an execution of

the product automaton, then the same initial n_emory together with the projection of that sequence is an

execution of the corresponding component automaton. Therefore, for every sequence of memories derived

from an execution in the product automaton, there exists an almost identical sequence of memories derivable

from a sequence in the component automaton. (The original sequence may have additional memories that

are the same as their immediate predecessors in the sequence on the writable variables of the component
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automaton.) Therefore. fin' an al)propriate class of temporal logic fl)rmulae (those that only invoh'e the

writable variables of ltw component automaton, and are "stuttering" invariant), if a formulae holds of the

component automaton, it automatically also holds of the product automaton. It is ore" hope in fmme work

on this systen_ to be able to incorporate this into DOVE.

4 Extending Dove with Products

In the previous section we (lescrib(,d the mathematics of the pro(hint ()f two automata. In this section we will

(tiscuss our nmtho(l of iml)lementing the constructioll of l)r()du('l autonmta as an exlension It) DOVE. ()ur

current approach is to add an exlenlal tool that can parse flies produ('e(l by DOVE, analyze the ('ontents

of those files to (teternfine the details of the component automata to) be comt)ose(t, construct the t)ro(hl(:t

automaton, (letermin(, layout ilff()rtnation for it. and finally output all this infornmtion into a new file thai

can he input into DOVE.

In the course of a DOVE session, various h)cal files are ('teated, such as an stag ill(,, a thy file, an nw

file, etc. The smg file, which stands for "state machine graph" ill(' (for examt)le, plugin, stag), contains all

of the information re(tuired to (lescribe the finite state machine. This file inchldes not only the et)nstru('tion

and layout information al)out the stale machine graph, but also the infl)rmation to define varial)les, state

conditions and transitions between states.

An stag is a sequence of lines, each beginning with keyword, followed by data relevant to the item being

added. Firstl.v, the smg file gives some preferences for displa.v of the state machine. The gk)ba] variable

grid0n tells us the canvas is grid(led by being set it to 1, att(t not gridded by being set it to 0. Tit(, variabk,

edit_SetGridSize says the size ()f ttle grid.

The nodes in the stag file are defined using the keyword file_RestoreNode follow by the node number.

node coordinates an(t notle llaln('. For exarnt)le, in the l)hlgin state machine graph file, we define the \Vait

state by

file_RestoreNode 0 {20.0 I0.0} Wait

The node number of Wait is t/and it is located at (20.0, 10.0). The edges in the t)lugin smg file are created

by the keyword file_RestoreEdge followed by edge number, the mHnber of the starting node. the number

of the ending node. their (tirectit)ns, some cot)rdinates it travels through, and the location of the label and

its name. For example, the edge Plugin in tile plugin smg file is defined as follows:

file_RestoreEdge 0 0 north I south {{20.0 13.0}} {{20.0 lI.0} {20.0

12.0} {20.0 13.0} {20.0 14.0} {20.0 15.0}} {20.0 13.0} Plugin

In this example, its edge number is 0, it comes out from north of tim node 1 and goes into the south of node

l, its label, Plugin, is at (2(/.0. 13.0), and it travels through the t)adl of [(20.0, 11.0), (20.0, 12.01, (20.0.

13.0), (20.0, 14.0), (20.(I. 15.01].

The smg file gives two kinds of variables, heap variables anti input variables. The heap variables are

defined using the keyword dvd_def. It is followed by infbrmation about their names, types, status and some

comments on them. Also we define input variables by div_defs followed by the same information as the

heat) variables.

As for the definition ()f the transitions, the stag file use dtr_defs. It gives a list of all the transitions

followed by details of individual transitions. These details include the comments, status and the content of

the transitions. The (:ontenl of lransition has guard and act definitions in it.

Also it should have an initial state which is defined by the wlriabh' di_startStatea value. The initial

condition is giwm by setting the variable di_predicate. And we can add some comments on the initial state

by di_description.

In addition, tit(, smg file contains some optional infi)rmation about the finite state machine. For example,

if the state machine has })e_m thwacked and there is no syntax errors, the variable dchk_smgChecked is set to

be 0, otherwise it equals 1.

From all the information above, we already know enough information to construct the state ma('hine.

Any modifications of the stag file will directly change the state machine in DOVE. By creating a new stag
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/ih_, w(' can generate a new finite state machine without starting up the DOVE. We can construct th(, finite

state machine to which is the composition of more than one component in one model without the need to

interact with DOVE.

Using tile above information, we must parse the stag files of component autonlata to extract infornmtion

to recollstrtlct the autolnata. Once the alltOltlat;i have })(,ell reconstructed, we must l)uiht the product au-

toiilatotl. For this we follow quite closely the mathematical description given in the previous section. SML

data t.vI)es anti flmctit)ns may be used to c(mlt)llte the constructions previously given as mathematical for-

nmlae. Once the pro(hleI has linen COllStructed, we still need to general(, layout information Imfore we can

generate a stag file to add the product automaton to DOVE.

In DOVE, layout information is generated fl'om interactions with the user. The user places nodes at

various locati()ns on tit(, drawing canvas att(t draws edges |)etween tilt, various nodes, indicating cllrvatllre [)y

the t)ath of th(, mouse. The layouts may be altered clicking and dragging the various entities to be changed.

DOVE (toes some work to generate a (lecent presentation of the graph, 1)ut the basic layout information

comes fl'om the user. When we automatically generate till' product automata, we must also automatically

generate some positioning for the components: to make the user generate this information would be almost

tantamount to inaking the us(u" create the t)roduct in the frst place. To generate this information, we make

use of the grat)h visualization tool dot ([3]). Dot is applied to a file that lists the nodes and edges of a directed

g_raph_ together with any desired labellings of the nodes and edges, and the desired shalm (and coh)r) of the

nodes. Till, following is an example of a part of an input file for dot for the product of the two automata

given in Se(:tion 2:

digraph g {

n8 [label = "CheckPlugin_Wait", shape = circle]

n4 [label = "CheckPlugin_CheckValueOK", shape = circle]

nO [label = "Wait_Wait", shape = circle]

n8 -> n4 [label = PlugOK all CheckPlugin]

. • •

nO -> n4 [label = "Plugin"]

Dot then generates a layout for the graph and out puts it in one of several formats, including gif and

postscript, for example. Tile mode we used is an expanded form of the same language used for input, where

layout coordinates have been added. The above graph description is translated to:

digraph g {

node [label="\N"] ;

graph [bb="0,0,2211,516"] ;

n8 [label=n8, shape=circle,

n8 [label=CheckPlugin_Wait, shape=circle, height="0.56",

pos=" 1128,488", width="O. 56"] ;

n4 [label=CheckPlugin_CheckValueOK, shape=circle,

height="0.56", pos="1028,212", width="0.56"];

• . o

nO [label=WaitWait, shape=circle, height="0.56",

pos=" 1709,304", width="O. 56"] ;

n8 -> n4 [label=PlugOK_atl_CheckPlugin, pos="e, 1048,214

1139,471 1165,429 1223,318 1171,250 1156,231 1092,221

1055,215", lp="1270,350"];

nO -> n4 [label=Plugin, pos="e,1048,213 1692,293 1685,289
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1679,285 1675,284 1557,244 1168,219 1057,213", lp="1633,258"];

}

For each node, tile size (heighl and width) of the circle, and Ill(' position of its ¢'enter is added. Each edge is

extended with path information, consisting of the position and direction of the terminating arrowhead follow

by a sequence coordinates that the edge will pass through, and with the coordinates of the left edge of the

label.

We must parse the informati(m returned Kern dot and combine it with the non-graphical infornmtion for

the product autolilatoIl (such as the guards and a(:ti()lls for each transition}. Also. the graphical information

produced by dot is not eoml)letely suitable for directly inputting into an stag file. We need to perform scaling,

and better layouts seeul to be given hy thinning the points for layollt of the transitions. Once we adjust Ill('

information fl'onl (tot and combine it with the non-graphical information, we can finally produce an smg file

that describes the prodtwt allttllll_/tO[l to DOVE. ()ltce this file exists, tit(, user can start llp DOVE with it.

alld proceed to s_ate alld prey<' l)roperties about it.

5 Future Work

The work described in this troller outlines a way to build the interactive components into one finite state

machine by extending DOVE with product automata. By using the information we get fl'om parsing th(, stag

file in D()VE. we can create a new state machine graph file by hand without disturbing DOVE. Programming

to perform all of the steps indicated in Section 4 is not yet finished and tested. We anticipate having a

completed prototype by the time of the conference.

Once the product automata is built, we also need to test its correctness and feasibility. We begin this

project because we were attempting to use DOVE to reason about a medium-sized real-w()rld safety-critical

system. This system could b(, naturally decomposed into a hierarchy of subsystems communicating through

limited intefa(:es of input an(t out lint variables. In attempting to use DOVE, we found ourselves attempting

to comt)ose these subsystems by hand. With the completion of this tool, we will return to this example and

use DOVE to describe this hierarchy an(t complete the task of proving tile required properties.

As described in this paper, we are adding a tool to DOVE that will allow for the automatic construction

of product automata from eomt)onent automata. However, there is more that we desire. At the end of

Section 3. we indicated thal the mathematical theory underlying the product automata should allow us

to automatically translate proprrties that hold of an individual component automaton to corresponding

properties of the product automaton. DOVE should be extended to support such a feature. The user should

be able to reason about the various components and then have those results automatically carried over to

the t)ro(tuet when tile product is fi)rmed or its theory is subsequently updated. To support this with the full

rigour currently available in DOVE, we would need to be able to prove in Isabelle that the product that we

have externally created is indeed the product as mathematically defined. To t)e able to prove such a fact

requires a deeper embeddint_ of finite state machines in Isabelle than is currently used. Therefore. adding

this extension would require a si_;infieant reworking of the foundations of DOVE. It is our opinion that the

benefits would merit such an effort.
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Abstract. This paper introduces the topic of metabolic pathways and explores it a_ a subject for

study by the theoren>proving community. A description of the issues involved is provided, as well as a

justification of why a logic-based description of these t)athways migtlt complement the current t)rogress

in the area of Bioinformatics.

1 Introduction

Bioinformatics is the application of COmlmtational methods in the understanding of biological systems.

Typically, it involves analysing information stored in large databases; the information itself is obtained from

experiments.

The processes of gene expression and protein flmction are schematized in Figure 1. Bioinformatic research

on these processes has given rise to three sub-areas:

genomies is the deciphering of the code contained in the DNA, that is knowing what the actual strings are

and which genes exist; understanding how the code of the DNA is actually expressed

proteomles is concerned with understanding the flmctioning of proteins, which structurally are the products

of DNA translation and functionally are the active agents of life, whether as enzymes or channels or any

other way.

metabolomics studies the biochemical processes that occur within cells, and the complexities of control

that make living organisms.

Each of these topics of research has given rise to a large variety of formalisms developed by often competing

groups. An important issue is finding the right abstraction which allows the different tools to work. Each of

these systems has its own language. I discusses the fragmentation of bioinformaties protocols, technologies

and standards, that together created a landscape of confusing and poorly integrated web sites and other

services, and suggests that the solution may be a formal model to unify these languages.

The success of research in genomics can be attributed partly to the use of a very simple abstraction, namely

the four letters A,T,C, and G organised into substrings (the genes), which are then strung together to form

chromosomes. Similarly, proteins are formed front a larger alphabet of amino-acids. A paper by Giegerich,

Hinze and Kurtz [3] presents a small model of DNA/proteins in Haskell (Figure 2). Note that this description

of the process of DNA transcription does not scale up to the

However, when we come t.o proteomics, we start encountering difficulties, as there is no simple representation

for the shape of proteins, and it is still not possible to predict the shape of a protein from knowing its chemical

structure.

Metabolism can be seen as a complex network of reactions depending on the interaction between many

different kinds of molecules. The primary actors are enzymes - proteins that facilitate reactions. Here also

there is a problem with finding the appropriate abstraction for representing the biological system. Graph

theory is usually part of the model, and there are different programs for displaying graphs in a pleasant

fashion on a 2D screen. However, the additions that need to be made to the graphs are:

* Research done partially while author was a Visiting Fellow at the Australian National University.

See http:/ /www.oreillynet.con_/puh/a/network/2002/O1/29/bioday2.html
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0 Effector molecule

_ Active protein

Fig. 1. From DNA to t)r_trin flznction (from www.people.virginia.edu/ rjh9u/trtrp±ct.hl;ml
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data Nucleotide = A I C I G ] T

data AminoAcid =Asn I Lys I ... -- and so forth (aminoacids)

type DNA = [Nucleotide]

type Protein = [AminoAcid]

type Codon = (Nucleotide, Nucleotide, Nucleotide)

genCode :: Codon -> AminoAcid

genCode (A, A, A) = Lys; genCode (A, A, G) = Lys;

genCode (A, A, C) =Asn -- and so forth

ribosome :: DNA -> Protein

-- the ribosome always starts at ATG

ribosome (A : T : G : x) = Met : map genCode (triplets x)

triplets [] = []

triplets (a : h : c : x) = (a, b, c) : triplets x

wc_compl A = T; wc_compl T = A;

wc_compl C = G; wc_compl G = C

complSingleStrand [] = []

compiSingleStrand (a : x) = wc_compl a : complSingleStrand x

dnaPolymerase x = (x, complSingleStrand x)

Fig. 2. Genomics in Haskell

classes of dmmicals

classes of reactions

- inexact matching of grat)hs

The data needs to be stored in a rich fornlalism. The number of macromolecules, reactions, combinations.

etc is huge. The analysis needs to take into account these interrelations between entities. In this paper we

explore the use of higher-order logic to represent and manipulate nmtabolic information.

2 Biochemical reactions and enzymes

A metabolic pathway is a sequence of biochemical reactions. These reactions are rigorously controlled by a

complex mechanism, in order to maintain balance within ceils. The most direct form of control is through

a catalyst. Catalysts are not consumed by a reaction, so that once a molecule of the catalyst facilitates

a reaction, the products are produced, and the catalyst molecule is released back into the environment,

potentially allowing it to facilitate another instance of the reaction. Theoretically, the reactions would still

proceed in the absence of the catalyst, but in a slower rate, sometimes close to zero. It is usefifl for biochemical

reactions to depen(t on catalysis, in order to provide control mechanislns.

Most chemical reactions have a hidden component: the energy involved. In inorganic media energy is mutated

into heat, but in living organisms it. is store(t into complex molecules, which serve as a buffer. Cellular energy

management is based around pairs of related molecules, where one contains a substantial amount of energy

compared to the other. Typical pairs are ATP and ADP (Adenosine Tri and Di Phosphates), GTP and GDP,

and NAD+ and NADH. When energy is required for another reaction, the high energy molecules are used,

an(t reph,ifish the sto(:k of low energy molecules which then are used when more energy is released elsewhere.
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Tilercareothersourcesof moreconcentrated energy as well, e.g. in the form of lipids. I)llt these take longer

to release. This energy is first transferred into ATP/GTP molecules which are then used in situ.

Typically one direction of a reaction releases energy while the other consumes, or stores energy. Most reactions

are theoretically reversible, hut lhe difference in energy means that one direction is favoured over another.

Furthermore, even if a reaction ultimately releases energy into the' medium and is favoured, it often needs

a lot of energy to be started. Calalysts often work by reducing the energy required for a reaction to occur,

and thus can increase the rat(, of reaction.

While catalysts can be of one of many tyt)es, enzpmc.s are catalysts primarily made up of proteins. Typically.

an enzyme facilitates a reaction by slotting reactant molecules into particular spaces and thus bringing them

into close im)ximit.v and at the right spatial relation so that the reaction can occur: once this happens the

product molecules arc, releas(,d ilitO the environment anti now reactants occupy the now va('ant spaces close

to the protein.

2.1 Classification of enzymes

Enzymes are a large group of proteins; enzyme list from 1992 contains 3196 live entries. With such a large

number, it is important to classiC, them in a meaningflll and useful way. The most accepted inethod of

classification of enzymes is provided by their EC number. This is a strictly flmctional classification, based

on 4 numeric fields [1]. The first field specifies the kind of reaction the enzyme catalyzes, while the second

one describes the active atoms involved. This is illustrated in Figure 3

1. Oxidoreductases 1.7. N coml)ounds 2.4 ....

1.1. CH-OH 1.8. Sulphor 3. Hydrolases
1.2. OXO 1.9 ....

1.3. CH-CH 2. Transferases
4. Lya_scs

1.4. CH-NH(2) 2.1. 1-carbon group
1.5. CH-NH 2.2. ketone residues 5. Isomerases

1.6, NADH/NADPH 2.3. acyl 6. Ligases

Fig. 3. Classification of enzvmes

It should be remembered that this classification is functional, and the information is usually derived from

biochemical experiments. But enzymes should also be understood to be essentially proteins, produced t)y

the translation of a gene anti t h(,n the activation of the t)rotein By taking a t)articular 3-(timensional shape,

which is a consequence of interaction of its particles with each other and with the environment. Correlating

a known enzyme function tt) a l)articular gene is a matter of intense research in the field of bioinformatics.

As an example, one may look at a particular place in the EC (:lassifieation: EC 1.1.99 eonsists of malate

dehydrogenases. But there are many malate dehydrogenases, from different organisins. EC 1.1.99.16 repre-

sents a variety of proteins, ie NCBI 1788539 on E.Coli and NCBI 2078007 in P. Aeruginosa. A comparison

of the sequences reveals that th(,y are of different size and are of different sequence st) how do we know

they are the same enzyme? An ortholog cluster is such a group of flmctionally related enzymes, one from

each organism, which can be postulated to have a common origin. Confirmation of this link can t)e partially

obtained by applying string mat('hing algorithms, but this is inadequate t)ecause the relation between dif-

ferences in the aminoacid structure of proteins and their flmcti(mality is not linear. Another approach to

correlation of enzymes lies in understanding the pathways in which the enzyme is used. The understanding

of these relations is crucial for several of the applications of bioinformatics, such as understanding etiology

of diseases and aiding drug design.
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3 Understanding metabolic pathways

A pathway consists of a sequence of biochenfical reactions. Pathways can be classified into several types:

synthesis, degradation, and energy transfe. Each of these pathways is made of reactions that can be classified

in a way similar to the enzyme classification of Figure 3. As many of the molecules in a pathway are recycled.

quit(, often pathways are shown as cycles, specially when one of the recycled elements is of larger complexity

than some of tim products, or when it appears in very few other pathways.

One of the most well known pathways is what is known as Kreb's cycle, or TCA cycle, illustrated in Figure 4.

This pathway is shown as a cycle because a Citrate molecule is regenerated each time, which is then used

in successive reactions to yield high energy NADH and GTP molecules. The citratenmlecule ix a product of

the r(_action of oxaloat:etate with acetyl CoA (co-enzyme A) which is the productderived fl'om "burning" of

sugar. ()n(' nlav note the presence of several enzynles (indicated by the -ase suffix) which drive this cycle.

Metabolic networks are v(,r.v robust, due to several factors:

1. failure of an enzyme due to a structural change is not always catastrophic, in the sense that impairment

of an enz.vnl(JS function can be partial;

2. if a particular enzyme is non-functional, other enzymes which otherwise have only a weak action can tie

modulated to have further effect, as many enzymes can work on different pathways;

3. there may })e several pathway variants: similar fimctions using different reactions and routes, which can
continue ellular flmction in a reasonable manner.

Within a natural enviromnent, a pathway does not occur in isolation, but is part of an elegant, complex

system [6], where molecules are resources that are shared between many processes, or which are made available

through diffusion or membrane transport mechanisms. Also, innumerable instances of reactions from different

pathways occur simultaneously and in close proximity, and the balance between the concentrations of all

these elements is intricate. The separation into individual pathways, and the concretization into individual

molecules, is merely didactic.

Furthermore, one needs to take into consideration the compartnmntalization of the environment through

permeable membranes. Proper cellular function is tied to the mechanisms for transport of molecules

whether through simple diffusion or across a membrane (between the cytoplasm of a cell and its environlnent

or between the cytoplasm and the nucleus or organelles such as the mytochondria) through channels. Quite

often proteins are involved in these transport mechanisms, and they are subject to control strategies similar
to t h(, control of reactions.

3.1 Other biochemical networks

Metabolic pathways are just one type of biochemical networks. Other networks are gene regulatory networks

and signal transduction networks, which make sure that the biochemical reactions occur at rates that are

beneficial to the organism, depending on extra-cellular factors as well as internal feedback mechanisms.

A simple form of control for enzymatic catalysis is the control of the production of the proteins from DNA.

The more proteins are created and activated as enzymes, the higher the rate of reaction. By stopping the

production of enzymes, eventually the concentration will beredueed, and the rate of reaction will decrease.

However, the process of protein production may be slow, and the rate of natural degradation of proteins might

be extremely slow, so other mechanisms have evolved, such as signal transduction networks and hormonal

signalling.

As well as having more short-term control of metabolism, organisms also need to perform long-term control.

One particular method of control is through the use of regulons, which control groups of operons which

control gene groupings. Global regulons coordinate regulation of operons in multiple metabolic pathways,

other global regulators act through control of DNA spatial configuration. The biochemical logic in genetic
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regulatorycircuits tu'ovides real-tinm regulatory control, which can be seen as a branching decision logic,

executing stor(,d t)rogralns that guide cellular differentiation extending over many cell generations.

4 Representing metabolic pathways

In this work we are interested in developing suitable representations for the kind of information described

above. I/epresenting this kind of information in a plain, first-order system doesn't capture the true richness of

the domain, because biochemical processes are characterised by their generality and adaptability, as well as

the inter-relationships between the many entities. Several open research prohlems such as discovering evo-

lutionary relatedness, finding alternative pathways, and predicting shatm fl'om sequence depend on finding

thes(' relationships.

.Many databases of metabolic information have been developed and are in widespread use by biologists and

biochemists. While ideas of object-orientedness and subclassing rnechanisins are sometimes exploited, several

of the languages and techniques are quite a(t-hoc, and many of the features that couht be implemented by a

good type s)'stem are currently processed through extensive explicit progranmfing. We next introduce some

of these systems, and then present a vision for a more appropriate representation.

4.1 Existing technology

Biochemical dynamics are sometimes modelled quantitatively, in order to capture the situation. A popular

model is the e-Cell [10], which represents a simplified (:ell in an object oriented language (C++) and allows

experiments in which concentrations of molecules can be set and observed at different (virtual) times. How-

ever, there is still a lot that can t)e gleaned about metabolic processes from a purely qualitative model, and

this is tile apt)roach taken by most of the existing systems.

There are many databases with very impressive amount of information about metat)olism, such as KEGG

[4], METACYC [5], EMP [9], and UM-BDD [2], amongst others. Often these databases have grown from an

attempt to use, organiz(, and share in-house data. an(t some of the software tools have been deveh)ped with
these aims in min(t.

KEGG (tile Kyoto Encyclopedia of Genes and Genomes) is one of the best sources of data. It covers not

only metabolic information but also what is possibly tile most complete genome database. It is based on the

DBGET integrated database, and is also linked with LIGAND (a chemical database for enzyme reaction).

According to Peter Karl), the developer of MetaCyc, KEGG mixes information from different organisms.

It also has no information about enzyme inhibitors or subunits, or substrate st)ecificity. MetaCyc contains

information about 4218 reactions organized into 445 pathways, obtained second hand from literature, and

covers 12 organisms. MetaCyc stores super-pathways - groups of pathways linked by common substrates.

Pathways are inferred using a module called PathoLogic. Some problems identified with MetaCyc are missing

or incorrect inforination.

WIT is a system for reconstructing metabolic networks based on EMP data [7], and it supports tile use

of t)henotypic data as well as usual biochemical and genonfic information. EMP bills itself as the most

comprehensive source of biochemical data. The University of Minnesota's UM-BDD focuses on bacterial and

archaeal pathways, and the study of enzymes. The information is curated from different sources. Amongst

all the databases, it is the one where the contribution from different sources, including KEGG and EMP, are

acknowledged, and the imt)ortance of sharing information is raised.

All these systems seem to work on the t)remise that metabolic pathways are graphs, ie lists of reaction pairs.

The way each of these reactions, and the consituent molecules, is stored and accessed is an engineering

issue, but mostly they use a straight-forward database representation. However, because they represent

"large, noisy, coInplex data-sets and knowledge sets" (in tile words of Peter Karp), there are bound to be

inconsistencies and information of limited certainty. It seems sensible to apply some of the expertise of tile

theorem-proving (:omnmnity in developing a well-thought out ret)resentation for this knowledge.
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4.2 Pi-Calculus models of bionetworks

There is substantial work on models of biological networks by Regev, Priami, et al. using Stochastic Pi

Calculus [8]. Reactions t)etw_,en molecules are activated by the exehange of signals, and hiding is used to

model specificity, and creation of imennediate compounds. Their models are quite detailed, and capture

numerical reasoning a]Ollg with the qualitative description. It is llllClear if the numerical l'eSU]tS obtained by

running the stochastic pi-calculus descriptions correspond to real-world data, and if the semantics of the two

systems correst)ond to each oth(,r. Fm'thermore, the descriptions are given in great detail, lint this detail

inakes it difficult to get a clear picture and reason about the pathways in a structured fashion. And there

is scope to explore families of reactions, something that would be aided with the use of a richer type-based

language, which better capture the general rules alia polymorplfie ilatllre of metabolism.

5 Use of higher-order formalisms

While the databases that have ]wen described ahove contain a lot of information about metat)olic processes.

one aspect they all seeln to be lacking is an appropriate ontology for the system. The databases take their

queue fronl encyclopaedias, which store information which must then be processed by the scientist who buihts

ontologies in an informal fashion. There are projects aimed at building ontologies for biosystems (such as

the use of Description Logics for building the Tambis Ontology (TaO); these logics aim at improving the

understanding of the way infi)rmation is stored in the databases, rather than looking purely at the biological

systems themselves. Typical ontologies use a small numher of concepts, such as relations, instances, and

axioms.

Tile use of a logical formalisln for describing metabolic data can move the paradigm for conllmtational models

of metabolisnl significantly. Rather than considering a database, where the power exists in the capture of

a great amount of details and the existence ofvisualization and access tools, a logical model would offer

simplicity and the power to add new information in a simple and consistent manner, l-lather than testing a

new model for a pathway as a now graph in the database, one could write it as a flmctional composition of

possibly polymort)hic flmctions, and reason about it within the established logical rules and deduce properties

such as liveness of the cycle.

Several ff)rmalisms which have been developed initially by logicians and later eagerly adapted by computer

scientists for the purpose of describing computational systems are particularly suitable for capturing the

workings of metabolic pathways:

Temporal logle: a systent of inference rules that allows one to reason about the evolution of a system, in

terms of eventual outcomes, invariants, entaihnents, aim fairness amongst several processes. The goal

is to know the outcomes of a process not t)3, simulating it for a long (abstract) time but by analytical

reasoning.

Linear logic: a systeln of inference rules that allows one to model resources, and propositions that hold at

one point and may not hold at the other. One of the main simplifications of traditional inference systems

is that once a theorem is said to hold, it needs to be assumed to always hold: this nlakes it difficult to

model transient properties i_herent to biological systems. Linear logic solves this issue by allowing some

assuInptions to be used only a finite number of times, which therefore inakes it suitable for representing

chemical processes.

Type theory: simple data types do Ilot capture the richness of groupings and dependencies existing in

natural systems, t/ecent int_rest in object-oriented modelling shows that hioinformaticists are keen on

exploring new type systems, but object-orientation itself is more geared towards l)rogrammability that

description. The interaction between quantification, subtyping, and polymorphisnl of systelns such as

F <: allow a richer description of data.

All these apt)roaches can be imt,lemented within Higher-Order Logic. and in fact several implenmntations

in different proof systems already exist. New extensions allow the description of probabilistic algorithms
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andr¢,ascmingaboutth¢'m.In thispostersiml)lemodelsof ¢_nzymaticpathwaysusingall threef()rmalisms
abovewilldemonstratetheuseflflnessof theseadv;mc(,dlogicalsystemsto t)ioinfl)rmaticists.Thisisworkin
progress,andit isext)ectedthat asecondpassat a logicalmodelthat integratesthesetmratedescriptions
ill Ill(' thr(,(!fi)rmalismsabovewill b¢,d¢,velol)ed.
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Abstract. Extending the tvt)e theory of a h)gical fraInework with a proof irr(qevant'e modality has
several potential advantages, including the ability to represent subset tyl)eS and invarianls for l)roof
COml)ression. Although the extended theory is well-behaved, it is not yet ('omi)h,t('ly clear how to modify
the implem(mtation of a logical framework to accommodat(, 1)r()of irrelevance. The unificat ion algorithm
in th(' logical fram(,work Twelf, in particular, works bv a l)rocess of constraint simplification that
d(,t)(,n(ls on th(' notion ()f patl(,rn substitution. Adapting this algorithm to work with t)roof irr(d(,van('(,
requires generalizing th(, definition of pattern. We propose such a definition, guided I)y work with proof
irr(,l(,vanc(, and strictness, and make t)rogress towards t)roving its correctness.

1 Introduction

1.1 Higher-Order Pattern Unification

Our starting point is all algorithm for higher-order pattern unification using ext)licit substitutions due to

Dowek et al. [3]. The ditfi('ulties of variable capture involved in higher-order unification are avoided by a

reduction [2] to first-orde.r equational unification in a language with eXl)[icit substitutions [1t. This first-order
algorithm st)ecializes nicely for a decidable sut)set of unification problems, the patterw fi'agment. The strategy

of constraint simt)lification for solving general unification problems trying to solve equations wifich are

in the pattern fragment and postponing constraints produced t)y those that aren't, which may later be
resolved by substitutions arising from other equations though not complete, has been found to work well

in practice.

Informally, pattern is a term where all the variables (by which we mean metavariables amenable to

substitution) occur at)ore a sequence of distinct deBruijn indices, i.e. bound variables. If all variables have

atomic type (and we can easily transform problems to have this property) then this means each variable

must occur under a substitution whose range is a set of distinct deBruijn indi(:es, a pattern substitution.

Pattern substitutions are desirable because they have one-sided inverses, and so are injective. Equations of

the form X[(] = b therefore have at most one solution, written b[(] -* .

1.2 Proof Irrelevance

Constants are naturally injective; if we have a constant c : rl -+ ... -+ rn --+ r of 7t arguments, the terms

c 3i_ ... M,_ and e .lI_ -.. 31', are equal if only if _lli = _ll[ for all 1 < i < n. There are times when this
is not the desired behavior. Sometimes we wouht like to be able to make certain arguments to a function

'irrelevant' when it comes to deciding equality. This can occur when some arguments to a flmction are

me.ant to be thought of as witnesses of provability rather than pieces of data whose stru('ture matters. This

phenolnelloil iS proof ir'*vlcv.nce. Generally, suppose we use the folh)wing signature in the dependent type

system LF ([4]):

t, u : type

p : Ha:: t. type

c : Fix: t.Hy: (p x).u

a :t

b,b':pa.
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Intuitively, we have an t)bject a of type t, and st)me predicate p on ohjects of type t. The flmction c takes

two arguments: an argument a" of type t. and an argument y of type p :r (which might be thought of as a

proof that p holds of a') and returns an object of type u. As the preceding discussion describes, c _ b ¢ c, b'

because not all of e's arguments are the same on both sides of the equation b and t/ differ. We would

like to declare instead a d : H¢: t.Hy + (p .r).u, where the + symbol is supposed to be a l)romise that the

argunlent .q 'doesn't matter' in the output of d. We proceed to discuss some applications of proof irrelevance
in more detail.

1.3 Encoding Subset Types

Tile example above is really a trivial case of the use of proof irrelevance to obtain ade(tuate enco(tings of

.sub,set types, which can be useflfl when representing programming languages and logics in a logical fl'amework.

A sut)set type is a formal version of the common mathematical set-formation syntax {.r E X lo(x )} for some

predicate 0 on X. As a typical example of its usefillness, suppose we wish to represent a lambda calculus

which has a 'relevant' binder A ->l which requires the variable it 1)inds to occur at least once. We could try

doing this l)y t)eginning with the usual untyi)ed lambda'calcuhls

and defining a predicate

via tile logic program

tm : type

app : tm -+ (tm --+ tm)

larn : (tm --_ tm) --_ tm

occurs : (tm -_ tm) -_ type

occurs_var : occurs()_x.x)

occurs_appl : occurs(Ax, app ;_ll ,]I2) _- occurs(Ax._]/1)

occurs_appr : occurs()_x, app _]lt ,'_'I2) _-- occurs(/_x.-_/2)

occurs_lam : occurs(Aa', lam(:_l x)) _-- (Hy: tm. occurs(Ax.:ll x y))

which captures the proposition that an open term uses its free variable, and declaring a constant

olam :Ht : (tin -+ tm).IIp:occurst, tm

However, be(:ause the binding of the proofp is the usual, "relevant" binding, this encoding is not adequate:

There are generally nmltiple LF terms which represent a given object-language term. This is because there

are potentially many proofs that a variable occurs bound in fact there will be one proof per occurrence

of tile variable. Therefore we want to equate all terms using olam that differ only in which occurrence proof

they use. That is, we shouM declare instead

olam : //t : (tm --+ tm).//p .'-- occurs t. tm

and the new encoding is adequate. Though the revised olam still requires the existence of a proof p that

occurs t holds, it doesn't care which proof in a certain sense, which is guaranteed hy the type system.

1.4 Subterm Omission in Proof-Carrying Code

In a language like Java, some measure of safety of running code is insured by running the code 'in a sandbox,'

inside a trusted virtual machine. Proof-carrying code [5] is another technique which aims to achieve the same

(if not greater) safety properties without sacrificing runtime efficiency to emulating a virtual machine. The

burden of making a program safe falls instead on the author of the program, the code producer. The recipient

of a program, the code consumer requires a proof that the program received satisfies some safety policy, and

so the code producer l'nust send with the program a formal certificate of safety which can be mechanically

checked by the code consunmr to actually prow_ that the program won't violate the policy.
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Unfortunately,thesecertificatescansometimesbelarge,evenontheorderofthesizeof thesizeofthe
programbeingprovedsafi_.Techniquesfin'reducingproofsizearedesirable.Althoughtheprol)h,nloffinding
aprooffor agivenpropositionis typicallyundecidable,a proofmayhavemanySUbln'oofswhichcouldbe
easilyandefficientlyreconstructedbythecodeconsumer.D)r instance,aspartof a largeproofthat shows
that a programalwayscomputesa certainmathematicalfimctioncorrectly,it mightbenocessaryto show
sometrivial fact,say3+ 4 = 7.Nowtheformalcorrectness of this program depends on every last detail

of the proof being correct, but there is no need to send a pro, ff of 3 + 4 = 7 across th(' network there

can simply be a blank spot in Ill(, proof with an instruction saying, "please check that in fact 3+,1=7." The

trade-off her(, is saving network bandwidth by perhat)s spending more lime reconstructing proofs on lhe code

COilSllnler end.

In practice, proofs are freqlletll ly represented as terms in a type theory like LF. and checked with a tool

like Twelf ([8]). In this case, the idea of omitting subprooN really means omitting subterms. The question 1o

be addressed is. when can a subt(,rm be safely omitwd? Twelf already has facilities for providing sufliciont

conditions for termiTmtion of predicates considered as logic progrmns. When we can show using these tools

that searching R)t" a proof of P (which is what is ine_-lnt Ily "running the logic program P") always ternlinates,

and we know a proof of P, thon we (:all t)e sure that the code consumer can also find a proof of P. What we

do not know is that the code COllSuiner will find the same proof. It may seem like a desirable property of a

type system that if we replace a subterm S of a term 3I with a different subterm S' of the same type, then

3I is still well-typed, lint depondent types systems do not necessarily have this properly exactly because of

the dependence of types on terms. D_r example, in the signature

a, z : type

b : a --+ type

c: IIx:a.(b x)

d : H.r:a.(b x) _ z

kl, k2 : a

we have the typing

but not

• _- (d kl)(c tq) : z

• _ (d kl)(c k_):z

even though we have only chang_,d one subterm of type a to another.

If we introduce proof irrelevance, however, then it can be shown that replacing one subternl under an

irrelevant application with another preserves the whole term being well-typed. Therefore, it is safe to omit

a subproof of a large proof it' we can show that the subproof (:all be decidably recovered (i.e. if the predicate

can be shown to be terminating) and occurs under an irrelevant application.

1.5 Extending Unification

The task before us is to modify the pattern unification algorithm to work in a language with proof irrelewmce,

and in particular to find the right notion of pattern. A similar situation arises with tile notion of strict

definitions [7], which depends on the definition of pattern spines. In the absence of irrelevance, a pattern

spine is again a list of distinct bound variables. In [9] we found a modification of tit(, definition of pattern

spine which satisfies the same critical lemma as the original, again an injectivity property. Tile changes

made were adding an 'irrelevant cons' to tile syntax of spines and requiring distinct bound variables at

'relevant' positions and allowing any term at 'irrelevant' positions. _ imitate these changes ill a definition

of pattern substitution, and obs(,rve that one-sided inverses again exist, for an aptlropriate notion of equality

of substitutions. The theory her(, is siInply-typed throughout, though we expect an extension _o flfll dependent

types to be reasonably straightforwm'd.
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2 Syntax

We define the Acr'-caleuhls, an extension of the typed Act-calculus with term variables [1] to include proof

irrelevance in tile sense of [6]. For uniformity of syntax, we have a sort of modalities p with which we

annotate flmetion types, function abstractions, context and substitution conses, and applications (written

o). The modality r refers to the usual ('relevant') notion from A-eah:ulus and i gives the 'irrelevant' version.

Modalities p ::= r I i

Types ,4, B ::= a: I A -+" B

Contexts F ::= * [.4 -_' F

Substitutions s, t ::=id[l"la._'.s[.sot

3 Typing

There art, two typing judgments,

Term Typing F _- a :" A a has type A for modality l t
in the context F.

Substitution Typing F _-s:F' s is a substitution for the
variables of F' in F.

Note that the term typing judgment is also annotated with a modality. We abbreviate :r by : and :i by +.

The meaning of the irrelevant, tyl)ing judgment is given by the context operation +, defined reeursively

by
0 P ,__ •

and the rule

(.4-_' F) + = A ._ (F <_)

F q_V n : A

F_-a+A

F '_ is the context F with all irrelevant assumptions promoted to 'real' assumptions, so the typing rule allows
us to conclude that a + A if we can derive a : A when we are allowed to use even irrelevant assumptions.

The remaining typing rules are

A'rFF- I :.4 A 't_ FI-I":F

A.VF_-b:B FF-a:A_"B F_-b:"B

FF- A_.b: A-+I' B Fk- (ao"b) : B

F_- id:F

F_-s:F' F'_-a:U A

F i- a[s] :" A

F _- s : F' F' _- t : F"

F_-tos:F"

F_-s:F' F_-a:U A

F F- a ."s : A.u F'

Fx k X : Tx
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4 Reduction

We list a set of reduction rules which are a straightforward adaptation of those in A(_, inclutting those added

in [1] (Id. ldR, VarShlft, Scons) for critical pairs arising flom the addition of term variables.

Beta (Mi.a)b --+ (a[b .v id])

Eta M.'t .(a ov 1) -+ b if _l =_ b[?]

App (a o" b)[s] --+ (.[s] <>vb[sl )

VarCons l[a ,v ,s.] --+ a

Id .[id] _ .
P

Abs (A_'t.a)[s] --+ AA.(a[1 -" (.s' o ?)])

ch, o t]

IdL id os _ s

IdR s o id _ s

ShiftCons $ o (0 ." ._.) _ s

AssEnv (sl o se) o s:_ -_ ,si o (.s2 o ._:¢)

MapEnv (a."s) ot _t_[t].'(sot)

VarShift 1 -t' 3" _ id

Scons i[s] ." (1" o .s.) _ ,s

It remains to work out what tlormalization and confluence properties this system enjoys. It seems likely

that weak or strong normalization of any fragment should follow easily from the same property holding of

the corresponding fragment in the underlying calculus without irrelevance I)y a simple erasure of modality

information. However, to whatever extent the property would depend on the typability of a tenn. we might

encounter difficulty dealing with fifll dependent types, since erasing irrelevance from a dependently tyt)ed

term may not result in a well-typed term.

We might also consider adding a reduction rule

Irrel a .i .,3 ___ (1_ .i s

to capture the intended meaning of an irrelevant cons, but this clearly destroys any bOl)e of weak nor-

realization. We expect to handle the necessary quotienting-out of terms at irrelevant ('onses in a different

way.

5 Pattern substitutions

We define a judgment .spat ">-I. where s is a substitution, n a natural number, and I a list of natural

numbers. Its intended meaning is that .s is a patteril sul)stitution using deBruijn indices from I which are

no greater than n.

$_ pat,__ >'

spat n->/ m < n,m ¢ I spat "->1

Ill .r S pat,,_>/,m ¢_ .i .s.pat,__> !

Fronl this we can define pattern terms via a judgment a pat ''->1. defined by the rules

s pat ">/

X [s] pat" >-t

.pat ''->I m <_ n,m _. I apat '_->1

a o r m pat" > I,,,, a o i b pat '_>-/
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Definition 1. A Xcr'-tm'm is a hcf-pattern if dl of its s.(_,bterms of the forT,( a = (X[s] bl" .b,,) ave such

that a pat "->/ for some _, I. A pattern substitution is a Aa'-substitution all of whose Act'-normal form.s s
are such that spat '*->1 fin" some n, I.

Note that in the absence of any confluence result we hedge our definition of of pattern substitutions by

refiwring to all normal forms raflmr titan the, nornlal form of the substitution s. Since we do not have
substitution variables, we hope that in fact the normal forms of substitutions are well-behaved, and this

inelegance can be removed.

The proof in [3] that pattern sl)ines have one-sided inverses is constructive, and so can l)e described

algorithmically. We first give a direct description, and then sketch how to modify the algorithm. By unrolling

the induction de'finition, a pattern substitution _ is of the form

(11 .1_1 (i 2 .I_2 .. " C.lt) "ll,' 4( 111

P/lt

where

Observe that.

= bl .r b2 .r ... b,n .r _.,,

_f j If 3j./L) = r A aj = i;bi t a fresh variable X otherwise.

For any i, if pi is r, then by definition of _ and pattern substitutions we have ai[_] --+* i. Otherwise, iti is i,

and we have some term ai[_] occurring at an irrelevant position in the substitution _. The intended meaning

of irrelevance is that this is just as good as any other term at the same type, in particular the deBruijn index

i. Therefore, in a certain sense (and determining the right way to formalize this is the subject of ()tar current

effort) we have

o (_ 1 >' 2 .t,_ ...n .f'' Sn ._+, id

To modify the algorithm, we add modality annotations to the existing rules in a straightforward way,
and add two rules,

UDI ?" o (a .i _) J = ([j.,,_o_-l) o_

which cause irrelevant conses to act as if they were deBruijn indices that 'never occur,' in the sense that they

never match other indices during application of an inverse substitution to a term (NDI is like ND# in [3])
and they never occur in the range of 1""' during composition of a substitution with an inverse substitution

(UDI is like UD1).

6 Future Work

Computing the inverse is not the only operation on substitutions involved in the unification algorithm of

[3]. We must also extend the definition of intersection (C3 ( to transform equations of the form X[{] = X[(],

and the pruning substitution _[( to correctly handle flexible occurrences of metavariables. Moreover it may

be that the notion of flexible occurrence can be extended to include occurrences of metavariables anywhere

under irrelevant application while maintaining the correctness of the overall algorithm. We intend to work
out the appropriate extensions of these concepts towards a complete unification algorithm for higher-order

pat terns in the extended theory, and answer the t)asic questions of normalization and confluence mentioned
a})ove.
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A Verification of Rijndael in HOL

Konrad Slind
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Abstract. We present a verification of the Rijndael symmetric block cipher in the HOL-4 theorem
prover. In general, the proofs were easy: they proceeded largely by symbolic execution along with a
fl_w applications of algebraic rewrite rules, which were also early to prove. However, the proofs depend
on tight control of symbolic execution; otherwise, the problem size became to() large for an interactive
system..4.n important ast)e(:t of the formalization was to phrase Rijndael as a functional t)rogram.

1 Introduction

Rijndael [1, 2] is a collection of algorithms that encrypt and decrypt data. It recently won the AES (Ad-

vanced Eneryption Standard) competition to find a successor to DES. It was designed to he suitable for

implementation in software and hardware (from smartcards to fllll custom VLSI).

One of the attractions of veri_dng the fimctional (:orrectness of such a system is the simplicity of its

specification:

Vkey. decrypt key o enerypt key = I

Of course, the essential further requirement of a (:ipher is that it be hard to break: decryption of encrypted

data should be infeasible in the absence of the key used to enerypt. Our work does not address this problem,

whictt appears far more difficult to settle. The usual methodology seems to be one of falsifieati(nl: proposed

ciphers are sut)jected to a variety of attacks; if none work, the cipher is deemed "secure", at least for the

time being.

The two specification documents for Rijndael, one hy its authors Rijmen and Daemen, and one fr(nn the

AES organizers, are adinirably done. Each step in the algorithm is explained carefully and tliere are useful

glossaries aimed at avoiding any possible confusi()n. As well, there are appendices giving exact vahws for

the intermediate values of the state after each of the important steps in a sample computation. H()wever.

for verification purt)oses , much of the specification has an unfortunate emphasis on arrays and updates on
them. We therefore translated Rijndael into a purely fimctional program.

2 Technical Preliminaries

Many of the operations applied in Rijndael are operations involving the Galois field GF(2S). This has a

carrier set of 256 items, which is the number of elements enumerated by 8 bits. The byte bTb6b._b4b3b.,_btbe is

eonsi(tered as a polynomial with coefficients in {0, 1}:

b7x 7 + b6x 6 + bsx '_ + b4x '_ + b3x 3 + b2x 2 + blX + bo

Polynomial addition is bitwise exclusive-or, and so is subtraction. Multiplication of polynomials is harder,

since we need to be ch)sed under the ot)(,ration. Thus nmltiplication is performed modulo an irreducible
polynomial of degree 8; the (:hosen one for Rijnda(,1 is

m(x) = x s +x '_+ x a +x + 1

Written in hexadecimal, this is l lB. Naively done, modular multiplication of polynomials is slow (mul-

tiplying through, then running a division algorithm) but it turns out that the fllll operation isn't nee(ted:

instead, multii)lication by a constant suffices. In or(ter to multiply a polynomial b(x) by x, i.e., by hex 02.
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we can left shift (<<) tbllowed by a conditional xor with liB (which truncates to 1B). This is the xtime

ol)eratioil: I

xtime l, = (b << I) xor (if b < 80 then 0 else 1B)

With this primitive we can multiply a polynomial t)y an3" constant: the operation will t)e written as an

infix e. Multiplication with higher powers of x can he achieved t)y iterating xtime and intermediate results

can be added with xor: for example, muhiplying 57 hy 13 '-' yields

57.13 = 57. (01 xor 02 xor 10)

= 57 xor xtime(57) xor xtime(xtime(xtime(xtime(57))))

= 57 xor AE xor 07

=FE

There is also another notion (_f multiplication involved in Rijndaeh one where the polynomials have

coe/ficieuts in GF(2_), i.e., at'(' bytes. However. that notion serves mainly at the Sl)e('ification l('vel for the

algorithm and does not manifest itself in the (:ode. Similarly, since we are dealing with a fieht, there are also

multil)li(:ative inverse ot)erations, but they are also not ext)licit in the (:ode of the algorithm and so will not

be discussed.

3 Rijndael as a functional program

We will present Rijndael as a I)rogram in SML. Translation to other flmctional programming languages

should be easy. Since the algorithm deals extensively with [)its and bytes, it is helpflfl if tile host t)rogramming

language sut)ports ot)erations on these types. The SML lit)rary provides a structure Word8 implementing

1)ytes (the tyt)e word8). Literals for bytes may t)e written in hexa(teeimal in the format 0wxhl h.,. Ex('lusive-

or is provided t)y xorb. Rijn(tael is defined for three keylengths: 128, 192, and 256 bits. Our verification is

for a keylength of 128.

3.1 The state

The algorithm operates by repeat(,dly transforming a state of 16 8-bit bytes. In the original specifications,

the state is represented as a .lx4 arra.v. Tile algorithms access the state bv hvte. bv row. and t)y cohmm.

Instead of an array, we represent a state hy a 16-tut)le of bytes.

type state = word8 * word8 * word8 * word8 *
word8 * word8 * word8 * word8 *

word8 * word8 * word8 * word8 *

word8 * word8 * word8 * word8

The t)laintext input boblb21)..d_41)r,b(J, vbsb,_bmbllbl.ebl._bHb17, is moved into the state hy proceeding from left to

right through the input and placing the bytes into 'columns'. The inverse operation is used in deeryption.

fun to_state (bO,bl,b2,b3,b4,b5,b6,b7,b8,bg,blO,bll,b12,b13,b14,b15)
=

(b0 ,b4 ,b8 ,b12,

bl,b5,b9,bl3,

b2,b6,blO,b14,

b3,b7,bll,blg)

fun from_state (b0,b4,b8,bl2,

bl,b5,b9,bl3,

b2,b6,blO,bl4,

b3,b7,bll,blS) = (bO,bl,b2,b3,b4,b5,b6,b7,b8,

b9,blO,bll,bl2,bl3,bl4,blS)

These flmetions show how t)atlern matching on tul)les is used throughout instead of array indexing.

1 Note that the < in this definition is a comparison on bytes, and the literals 8(1, 0, and 1B are hexadecimal.

2 All literals are hexadecimal
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3.2 Rounds

Ttw main sWps of the algorittun are orchestrated by tim round computation. \Vc have' phrased this and its

invers(' as r(,cm'siv(, fimclions.

fun Round 0 [key] state = AddRoundKey key (ShiftRows (SubBytes state))

I Round n (key: :keys) state =

Round (n-l) keys

(AddRoundKey key

(MixColumns (ShiftRows (SubBytes state))))

I Round _ _ _ = raise Fail "Round: bug";

fun InvRound 0 [key] state = AddRoundKey key

(InvSubBytes(InvShiftRows state))

I InvRound n (key: :keys) state =

InvRound (n-l) keys

(InvMixColumns

(AddRoundKey key

(InvSubBytes (InvShiftRows state))))

I InvRound _ _ _ = raise Fail "InvRound: bug";

Ill a rolllld, t|lP lllaill operations on the state are to perform byte sllbstitlltioil llSillg SO called sboxe,s, to

shift th(, rows of the st at(,, and to mix the columns of tim state. \V(, will discuss these in turn.

Sboxes The Sbox is a permutation on bytes designed to be resistant to linear and differential cryptanalysis.

We create the function and its invers(' InvSbox from vectors of bytes.

val Sbox = curry Vector. Dub (Vector.fromList

[_wx63__wx7c__wx_7__wx7b__wxf2__wx6b__wx6f__wxc5__wx3___wx_1__wx67__wx2b__wxfe__wxd___wxab__wx76_

_wxca_wx82_wxc9_wx7d_wxfa_wx59_wx47_wxf_wxad_wxd4_wxa2_wxaf_wx9c_wxa4_wx72_wxc_

_wxb7__wxfd__wx93__wx26__wx36__wx3f__wxf7,_wxcc__wx34__wxa5__wxe5__wxf1__wx71__wxd8__wx3___wx15_

_wx_4__wxc___wx23__wxc3__wx_8__wx96__wx_5,_wx9a__wx_7__wx_2___x8___wxe2__wxeb__wx27__wxb2__wx75_

_wx_9__wx83__wx2c__wx1a__wx1b__wx6e__wx5a__wxa___wx52__wx3b__wxd6__wxb3__wx29__wxe3__wx2f__wx84_

_wx53__wxd___wx____wxed__wx2___wxfc__wxb___wx5b__wx6a__wxcb__wxbe__wx39__wx4a__wx4c__wx58__wxcf_

_w_d___wxef__wxa___wxfb__wx43__wx4d__wx33,_wx85__wx45__wxf9__wx_2__wx_f__wx5___wx3c__wx9f__wxa8_

_wx51__wxa3__wx4___wx8___wx92__wx9d__wx38__wxf5__wxbc__wxb6__wxda__wx2___wx1___wxff__wxf3__wxd2_

_wxcd_wx_c_wx_3_wxec_wx5I_wx9_wx44_wx_7_w_c4_wxa7_wx7e_wx3d_wx64_wx5d_wx_9_wx73_

_wx6___wx81__wx4f__wxdc__wx22__wx2___wx9___wx88__wx46__wxee__wxb8__wx_4__wxde__wx5e__wx_b__wxdb_

_wxe_wx32_wx3_wx_a_wx49_wx_6_wx24_wx5c_wxc2_wxd3_wxac_wx62_wx9_wx95_wxe4_wx_9_

_wxe7__wxc8__wx37__wx6d__wx8d__wxd5__wx4e__wxa9__wx6c__wx56__wxf4__wxea__wx65__wx7a__wxae__wx_8_

_wxba__wx_8__wx25__wx2e__wx1c__wxa___wxb4__wxc6__wxe8__wxdd__wx74__wx_f__wx4b__wxbd__wx8b__wx8a_

_wx7_wx3e_wxb5_wx66_wx48_wx_3_wxf6_w_e,_wx6_wx35_wx57_wxb9_wx86_wxc_wx1d_wx9e_

_wxe1_wxf8_wx98_wx_wx69_wxd9_wx8e_wx94_wx9b_wx_e_wx87_wxe9_wxce_wx55_wx28_wxdf_

_wx8c__wxa___wx89__wx_d__wxbf__wxe6__wx42__wx68__wx4___wx99__wx2d__wx_f__wxb___wx54,_wxbb__wx_6])

o Word8.toInt

val InvSbox = curry Vector. Dub (Vector.fromList

[_wx52_wx_9_wx6a_wxd5'_wx3_wx36_wxa5_wx38_wxbf_wx4_wxa3_wx9_wx8_'_wxf3_wxd_0_xfb_

_wx7c__wxe3__wx39__wx82__wx_b__wx2f__wxff__wx87__wx34__w_8e__wx43__wx44__wx_4'_wxde__wxe9_0wxcb_

0wx54_wx7b_wx94_wx32_wxa6_wxc2_wx23_w_3d_wxee_wx4c_wx95_wx0b_wx42_wxfa_wxc3_0wx4e_

0wx_8_0wx2e_wxa_wx66_wx28_wxd9_wx24_xb2_wx_6_wx5b_wxa2_wx49_wx6d_wx8b_wxd_0wx25_

_wx72_0wxf8__wxf6__wx64__wx86__w_68__wx98__wx_6__wxd4__wxa4__wx5c__wxcc__wx5d__wx65__wxb6__wx92_

0wx6c_0wx_0__wx48__wx5___wxfd__wxed__wxb9__wxda'_wx5e__wx_5__wx46__wx5___wxe_'0wx8d_0_x9d__wx84_

_wx9___wxd8__wxab__wx____wx8c__wx_c__wxd3__wx_a__wxf___wxe4__wx58__wx_5__wxb8__wxb3__wx45__wx_6_

_wxd___wx2c__wx_e__wx8f__wxca__w_3f__wx_f__wx_2__wxc1__wxaf__wxbd__wx_3__wx____wx_3__wx8a__wx6b_

_wx3a_wx91_wx_,_wx4_wx4f_wx67_wxdc_wxea_wx9_wxf2_wxc_wxce_wxf_'_wxb4_wxe6_wx73_

_wx96_wxac_wx74_wx22_wxe7_wxad_wx35_wx85_wxe2_wxf9_wx3_wxe8_wx_c_wx75_wxdf_wx6e_

_wx47_wxf_wx_wx7_wx_d_wx29_wxc5_wx89_wx6f_wxb7_wx62_wx_wxaa_wx_8_wxbe_wx_b_

_wxfc__wx56__wx3___wx4b__wxc6__wxd2__wx79__wx2___wx9a__wxdb__wxc___wxfe__wx78__wxcd__wx5a__w_f4_

_wx1f_wxdd_wxa8_wx33_wx88_wx_wxc7_wx3_wxb_wx12_wx1_wx59_wx27_wx8_wxec_wx5f_

_wx6_._wx5_wx7f_wxa9_wx_9_wxb5_wx4a_wx_d_wx2d_wx_5_0wx7a_wx9f_wx93_wxc9_wx9c_wxef.

_wxa___wxe___wx3b__wx4d__wxae__wx2a__wxf5__wxb___wxc8__wxeb__wxbb__wx3c__wx83__wx53__wx99__wx6__

_wx17__wx2b__wx_4__wx7e__wxba__wx77__wxd6__wx26__wxe___wx69__wx_4__wx63__wx55__wx21__wx_c__wx7d])

o WordS.tolnt

3.3 Byte Substitution

A byte substitution step applies an sbox to each (dement in the state: we phrase this as a higher-order

flmction for r(_-use:
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fun genSubBytes S (b0,bl,b2,b3,b4,b5,b6,bT,b8,b9,b10,bll,b12,b13,b14,b15)

(S b0, S bl, S b2, S b3, S b4, S bS, S b6, S b7,

S b8, S b9, S blO, S btl, S b12, S b13, S b14, S b15)

val SubBytes = genSubBytes Sbox

val InvSubBytes = genSubBytes InvSbox

3.4 Shift Rows

In a row shift step. the first row is n_)t altered, the second row is h,ft-shifted by one. Ill(' third row is hfft-shifted

by 2, and the fourth row is l(ffl-shifted by 3.

fun ShiftRows (bOO,bOl,bO2,b03,

blO,bll,bl2,bl3,

b20,b21,b22,b23,

b30,b31,b32,b33)

=

(b00,b01,b02,b03,

bll,bl2,bl3,bl0,

b22,b23,b20,b21,

b33,b30,b31,b32)

fun InvShiftRows (bOO,bOl,bO2,b03,

bll,bl2,bl3,blO,

b22,b23,b20,b21,

b33,b30,b3],b32)

=

(bOO,bOl,bO2,b03,

blO,bll,bl2,bl3,

b20,b21,b22,b23,

b30,b31,b32,b33)

3.5 Mix Columns

The mixing of cohmms is relatively complex in its operation. Each cohmm in the state is treated as a four-

term polynomial over GF(2 _) and multiplied moduh) x I + 1 with a fixed polynomial. A higher-order function

captures the general pattern for tim forward and reverse operations:

fun genMixColumms MC (bOO,bOl,bO2,b03,

blO,bll,b12,b13,

b20,b21,b22,b23,

b30,b31,b32,b33)

= let val (bOO', bl0', b20'

val (bOl', bll', b21'

val (b02', b12', b22'

val (b03', b13', b23'

in

(bOO', b01', b02', b03',

blO', bll', b12', b13',

b20', b21', b22', b23',

b30', b31', b32', b33')

end

, b30') = MC (b00,bl0,b20,b30)

, b31') = MC (b01,bll,b21,b31)

, b32') = MC (b02,b12,b22,b32)

, b33') = MC (b03,b13,b23,b33)

val MixColumns = genMixColumns MultCol

val InvMixColumns = genMixColumns InvMultCol
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In (he forward direction, the fixed polynonlial is .(x) = Oax :_ + 01x e + 01x + 02. After some massaging, w(,

arrive at the following transfornmtion on the cohnnn:

fun MultCol (a,b,c,d) =

((Owx02 ** a) xorb (Owx03 ** b) xorb c xorb d,

a xorb (Owx02 ** b) xorb (OwxO3 ** c) xorb d,

a xorb b xorb (Owx02 ** c) xorb (Owx03 ** d),

(Owx03 ** a) xorb b xorb c xorb (Owx02 ** d))

The inverse op('ration is harder, in the sense that larger coefficients are used: the fixe(t t)olynomi_d is _,- l (:r) =

0Bx :_ + 0Dar'-' + 09x + 0E. The column transfornmtion is:

fun InvMultCol (a,b,c,d) =

((0wx0e ** a) xorb (0wx0b ** b) xorb (0wx0d ** c) xorb (0wx09 ** d),

(0wx09 ** a) xorb (0wx0e ** b) xorb (0wx0b ** c) xorb (0wx0d ** d),

(0wx0d ** a) xorb (0wx09 ** b) xorb (0wx0e ** c) xorb (0wx0b ** d),

(0wx0b ** a) xorb (0wx0d ** b) xorb (0wx09 ** c) xorb (0wx0e ** d))

These operations are defined in terms of nmltii)lication by a constg-nlt, represented 1)3- the infix ** symboh

fun xtime b = (b << Owxl) xorb (if b < Owx80 then OwxO else OwxlB)

fun (OwxO ** v) = OwxO

I (c ** v) = if andb(c,OwxOl) = OwxOl

then v xorb ((c >> Owxl) ** (xtime v))

else ((c >> 0wxl) ** (xtime v))

Thereis also an exponentiation ot)eration , used to generate the key schedule:

fun exp (x,0) = 0wx01

I exp (x,n) = x ** exp (x,n-1)

4 Generating the key schedule

An important part of Rijndael is the calculation of the key schedule (a list of round keys) _om the original

key', as a preliminary step to the round computations. In each round, a new round key is added to the state

pointwise with AddRoundKey:

fun AddRoundKey

(kO,kl,k2,k3,k4,k5,k6,k7,k8,k9,klO,kll,kl2,kl3,kl4,kl5)

(bO,bl,b2,b3,b4,b5,b6,b7,b8,b9,blO,bll,bl2,bl3,bl4,bl5)

=

(bO xorb kO, bl xorb kl, b2 xorb k2, b3 xorb k3,

b4 xorb k4, b5 xorb k5, b6 xorb k6, b3 xorb k3,

b8 xorb k8, b9 xorb k9, blO xorb klO, bll xorb kll,

b12 xorb k12, b13 xorb k13, b14 xorb k14, b15 xorb klS)

The st)ecifieation calls for the key schedule to be generated by operations on 32-bit words. In our version

of ML (Moscow ML), only 31-bit words were available, so we rephrased the algorithm over quadruples of

bytes. We will pass over the code in silen(:e, since it is sonmwhat involved and the details are not important

fi)r the correctness proof.

local open Int nonfix o

fun SubWord(bO,bl,b2,b3) = (Sbox bO, Sbox bl, Sbox b2, Sbox b3)

fun RotWord(bO,bl,b2,b3) = (bl,b2,b3,bO)

fun Rcon i = (exp(Owx02, i-l), OwxOO,OwxOO,OwxO0) : word8x4

fun unpack [] A = A

I unpack ((a,b,c,d)::(e,f,g,h)::(i,j,k,l)::(m,n,e,p)::rst) A
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= unpack rst ((m,i,e,a,n,j,f,b,o,k,g,c,p,l,h,d)::h)

I unpack otherwise _ = raise Fail "generate_keysched(unpack)"

in

fun mk keysched top (bO,bl,b2,b3,b4,b5,b6,bT,b8,bg,blO,b11,b12,b13,b14,b15) =

let fun expand n (sched as (h::_::_::last::_)) =

if n>top then unpack sched []

else let val h' = if n mod 4 <> 0 then h

else SubWord(RotWord h) xor4 Rcon(n div 4)

in expand (n+l) ((h' xor4 last)::sched)

end

in

expand 4 [(bl2,bl3,bl4,bl5),(b8,bg,blO,bll),(b4,b5,b6,bT),(bO,bl,b2,b3)]

end

end

Finally, the t()I)-level functionality can be obtained by a function that takes a key and generates lh('

key schedule before building the encryption and decryption functions. The encryption function uses the ke.v

schedule and the decryption fun(:lion uses the inverse of the key schedule.

fun preCrypt key =

let open Int

val Nr = 10

val keysched = mk_keysched (BlockSize * (Nr+l) -I) key

val (keyO::keys) = keysched

val (ikeyO::ikeys) = List.rev keysched

in

(from_state o Round (Nr-l) keys o hddRoundKey keyO o to_state,

from_state o InvRound (Nr-l) ikeys o hddRoundKey ikeyO o to_state)
end

5 The verification of Rijndael

Rijndael is directly encoded m HOL with only a few alterations from the SML program.

5.1 Bytes

An interesting modelling question is how best to ret)resent bytes. In SML, bytes (word8) are an abstract type,

enmnerated by 256 literals. HOI. does not however have bytes built in. so we were confronted with several

choices: bytes may be represented by an enumerated type, or by" the numbers up to 256. or bv 8-tuples of

truth values. Although it is inefficient in a sense, we chose the latler ret)resentation.

To start, we define a few byt(' constants:

ZERO = (F,F,F,F.F,F,F.F)

ONE = (F,F,F.F,F,F.F,T)

TWO = (F.F.F,F,F.F.T.F)

THREE = (F.F,F,F.F,F,T,T)

NINE = (F,F.F,F,T,F,F.T)

ONE J3 = (F,F,F,T,T,F.T,T)

EIGHTY = (T, F, F, I:, F, F. F. F)

B = (F,F,F.F,T.F,T,T)

D = (F,F.F,F,T,T,F.T)

E = (F,F,F.F.T,T.T.F)

Infix operators h)r 'exclusiv¢,-or' on bits and bytes are defined, along witb an infix 'and' operation on

bytes
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x xor y -- -_(x -- y)

(a.b c,d_e,f,g,h)
XOR

(al,bl.cj,dl.cl,fl,gl,hl)

(,, t_.e, d, e, f, .(t, It)
AND

(aj,bl,cl,dl,el, fl,gl, h,_)

)((ixoral,bxorbl,Cxorcl,dxordl,)=_:xor cl,f xor fl,.q xor _.tl,h xor hi

)(aAal,bAbl,cAcl,dAdl,)= _,Ael,fA]j,gAgl,hAt_ 1

A few trivial algebraic theorems then follow: ZERO is tim identity for XOR, comnmtativity, and asso-

ciativity.
F .I' XOR ZERO = .r

F (x XOR y) = (y XOR x)
F (x XOR y) XOR z = x XOR (y XOR z)

5.2 The state

The flmctions to_state and from_state for maplfing into and out of a state are exactly the same as the ML

d(_finitions. That they are inverses of each other is trivial:

F V._. from_state(to_state s) = s

_- Vs. to_state(from_state s) = s

5.3 Applying an sbox to the state

The functions SubBytes and InvSubBytes for applying an sbox to a state are exactly the same as the

NIL definitions. Tile sboxes are each defined by a 256-way pattern match. The inversion theorem for these

functions is a consequence of the inversion theorem for sboxes, which is proved by analyzing all 256 cases

and evaluating the sboxes.

F Vw. InvSbox(Sbox w) = w

F Vs. InvSubBytes(SubBytes s) = s

5.4 Shifting rows

The flmctions ShlftRows and InvShlftRows for shifting rows in a state are exactly the same as the ML

definitions. The inversion theorem for these functions is trivial to prove.

F V.s. InvShiftRows(ShiftRows s) = s

5.5 Multiplication

The definitions of the multiplication functions largely follow the definitions. Tile xtime flmction is slightly

different, ()wing to our representation:

xtime (bT, b6, bs, b4, b3, b2, bi, bo) =

if b7 then (b6, br,, b,,, ",b:_, -"b2, b_, _bo, T)

else (b6, bs, b4, b:_,b'2, bl, bo, F)

The xtime function enjoys a distributive prot)erty:

Vt_ b. xtime((l XOR b) = (xtime a) XOR (xtime b)



A V('rifi<afi<)n of I/ijndael in HOL 135

Multilflication by a constant is a direct lranslation.

b_ * b2 -- i:f bl = ZERO then ZERO else

if (b_ AND ONE) = ONE
then b2 XOR ((RightShift bl) • (xtime b2))

else (RightShift bl) * (xtime b_)

Termination of th(' fitnctiotl is I)roved by regarding tile first argument as a number. The • operation
distributes over XOR:

_- Va' !j z. x * (._l XOR z) = (a" • ;q) XOR (x • z)

5.6 Column mixing

With column mixing, the proofls became larger. We need the inversion theorem

_- V._ :.statc. InvMixColumns(MixColumns ,s) = s

for the final pro()f, but •mire case analyses became too large and we had to resort to much more basic steps.

To see tit(, t)roblem let's consider the action on a cohmm (a. b, c. d). In the forward direction, we have

,' = F1 (., b. c, d)

b' = F.2(a,&c,d)

c'= F3(a,b,c,d)

d' = F_ (a, b, c, d)

and in the reverse we build up

a" = G1 (a', b', c', d')

b" = G.) (a', b', c', d')

c" = G:_(a'. b', c', d')

d" = G4 (a', b', c', d')

and we wish to show that a = a". b = b', e = e", d = d". Consideration of a should illustrate our strategy.

a' = (TWO • a) XOR (THREE • b) XOR c XOR d

b' = a XOR (TWO • b) XOR (THREE • c) XOR d

e' = a XOR b XOR (TWO • c) XOR (THREE * d)

d' = (THREE* a) XOR b XOR c XOR (TWO • d)

Thus

a" = (E • a') XOR (B • b') XOR (D • c') XOR (NINE • d')

= (E • ((TWO • a) XOR (THREE * b) XOR c XOR d)) XOR

(B • ((_ XOR (TWO • b) XOR (THREE • c) XOR d)) XOR
(D • (a XOR b XOR (TWO • c) XOR (THREE • d))) XOR

(NINE • ((THREE • a) XOR b XOR c XOR (TWO • d)))

By use of associativity and commutativity of XOR and distribution of • over XOR, we can separate

the problems into subproblems involving only one variable, each of which are easy to solve by case analysis

oil the 256 ways of fornfing a byte.

o" = (E • (TWO * a) XOR E • o XOR D • a XOR NINE • (THREE • a))
XOR

(E • (THREE* b) XOR E • (TWO* b) XOR D * b XOR NINE • b)
XOR

(E • c XOR E • (THREE • c) XOR D • (TWO • <') XOR NINE. c)
XOR

(E • d XOR E • d XOR D • (THREE. d) XOR NINE • (TWO • d))
= a XOR ZERO XOR ZERO XOR ZERO
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5.7 Joe Hurd's good suggestion

Tit(' computation of the key schedule is fairly complex. If we needed non-trivial prop(wries of it in order

to show CO1T(!CtlICSS. significant extra work would be required. After listening to a preliminary presentation

on this work. ,Joe Hurd suggested that it might suffice merely to treat the key sch('dul(, as all arl)itrary

list of keys. Ill fact, since the round computation (:onsmnes one key per round, it suttices to show that tim

key schedule is an arbitrary key list of length 11. x3,'ith this fact tile final correctness proof had no mort,

impedinmnts.

To t)rox'e this was, again, not simply a Inatt(,r of svnfl)olic evaluation. First we proved an im'ariant on

the key expansitm routine.

3<_A_ <44

3h. expand (n + 1 (h :: t) = expand n t

This leads directly to a theorenl relating the tirst and last calls of the key expansion routine.

_- Va b c d.

5hi It'2 h:l h,l h5 ]l(i h7 its h9 hlo hi! ]t12 hi3 hi4 hi,-5 Ill( _,]tit ills hl,,_, It:to

h21 h22 h23 h24 h25 1126 h'_7 h28 fl29 h30 h31 h32 h:_a h:_4 h35 ha6 h:_7/t3s ]t:_9 h40.

expand 44 [h40; h39; h._s h37; ]136; tl35; h34; tt3:t; 1132 ; h31; h30; h29; ],_2s;

h'27 ; h26; h25; h24; h2:l; h22; ]121; ]120; ]llq ; ]Its ]'_17; ]liB: hi5;

h 1,1 ; ]113; ]tl2 'Ill 1 ; Ill[}; ]19; ];'8; ]17; ]16; ] 5; h,l ; h:_; h2; [tl : a: b c; d]

expand 4 [a; b; c; d]

From this we quickly get that tile length of tile list returned by mkJceysched is 11.

F Vkey. qhl h2h:_h4 h,sh6hzhshghtohtl.

mkJkeysehed key = ]hi h2: h:l; h4; hs; h6; h7; hs; 119; hi{l; hi 1]

This theorem can be immediately used to build a representation of tile key schedule suitable for symbolic
executioil.

5.8 Correctness

The statement of correctness is

Vkey plaintext.

let (encrypt, decrypt) = preCrypt key

in

decrypt( encrypt plaintext ) = plaintext

Tile definition of preerypt is merely ml organizational device aimed at making a neat statement of the

final theorem. In the definition, the key schedule and its reverse are built from the key, and then the pair of

functions (encrypt, decrypt) is returned. The encryption function copies the input into the state, makes an

initial scrambling step with the first key, and then makes 10 rounds of further scrambling before transferring

the final state to the output. The proof shows that the deeryption function basically reverses these steps.

preCrypt key =

let sched = mk_keysehed key in

/et isched = REVERSE sched

in

((from_state o Round 9 (TL sched)

o AddRoundKey (HD sehed) o to_state),

(from_state o InvRound 9 (TL isched)

o AddRoundKey (HD isci_ed) o to_state))
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Thet)roofofcorre('tnessslartsln"exl)an(lingthedefinitionofpreCrypt.Thenthelenuna(mthelengthof
keyseheduh,'sisusedto rel)la('eth('variablesret)resentingthekeys('hedulean(tits reverseI)vcorr('sl)onding

lists of eleven variahles. Now the ll) rounds of encryt)tion and the 10 rounds of (tecryt)tioIl are mm'ouIM.

giving a large formula. The t)r-of finishes bv rewriting with the inversion lennnas.

5.9 An alternative decryptor

Daemen and Rijmen t)resent an alrernativ(' implemeIltation of the inverse round COmlmtation:

fun EqInvRound 0 [key] state = hddRoundKey key
(InvShiftRows

(InvSubBytes state) )

I EqInvRound n (key: :keys) state =

EqlnvRound (n-l) keys

(hddRoundKey key

(InvMixColumns

(InvShiftRows

(InvSubBytes state))))

The ahernative differs from the original in that the calls to InvShiftRow an(l InvSubBytes are swal)t)e(t.

as arc the calls to AddRoundKey an(t InvMixColumns.

InvRound with a key s('h(_duh' ks is (_quivalent to EqInvRound with InvMixColumn mat)ped over ks

(except for the first and last elements). The mapping operation over the key s('hedule is calle(t InvMixify:

InvMix [x] = [:r]

InvMix (h :: t) = InvMixColumns h :: InvMix t

InvMixify (h :: t) = h :: InvMix t

In the alternative version of preCrypt, the forward computalion is unchanged, and only the inverse

rounds and their key s(:hedule are ahered:

preCryptAIt key =

let schcd = mk_keysehed key in

let ischvd = InvMixify (REVERSE sched)

in

((from_tate o Round 9 (TL schcd)

o AddRoundKey (HD sch.ed) o to_state),

(from_state o EqInvRound 9 (TL ischcd)

o AddRoundKey (HD i.schcd) o to_state))

With the lemmas

_- Vs. InvShiftRows (InvSubBytes s) = InvSubBytes (InvShiftRows .s)

V._ k. InvMixColumns (AddRonndKey s k)

AddRoundKey (InvMixColumns s) (InvMixColumns k)

it is easy to prove

_- preCryptAlt = preCrypt.

6 Conclusions

The verification of Rijndael was relatively easy, which is good. One aspect of the problem was learning t)3"

trial and error whi(:h (tefinitions le(t to ext)onential symbolic evaluations. Lemmas about the generation (if
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thekeyscheduleandthemixingofcolumnswerethemainexamplesandrequiredthemajorityof theeffort.
Symbolicex(_ctltiOllallowedtheavoidanceof anyintimidatingat)straetalgebra.Rijndael.whenrenderedas
afimctionalprogram,isalsoquitesimple,andcould be taught to undergraduates with little difficulty. Thus,

it may be us(,f'ul as a pedagogical example of verification technology.

There are several illteleSlillg avelllleS tO explore:

- We anticipate that proofs for the other key lengths will be straightforward.

- The code we have proved correct encrypts and decrypts only a single block. So-called mode,s of opera-

lion specify various ways to encrypt arbitrary streams of data. Extending our work to these should be

straightforward.

- We would like to investigate the generation of hardware, e.g., gate arrays, directly from the HOL for-

mulation. There has already been much work on putting Rijndael into hardware, lint the provision of a

path froIIl higher-order logic to hardware seems appealing.

- Finally, encr.vption is one of a family of similar operations characterized by im_ertibility; for example,

COml)ression/decomt)ression and encoding/decoding. It would t)e interesting to see if commomdities can

be found in Ilk(' correctness proofs of these algoritlmls.
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The K Combinator as a Semantically Transparent Tagging

Mechanism

Konrad Slind and Michael Norrish

School of Computing, University of Utah

('anti)ridge University Genii)liter Laboratory

Abstract. The K cond)inator provides a semantically transparent tagging nwchanisni which is useflll

in various aspects of mechanizing highex order Iogk:. Our exalnples include: mlmerals, normalization

procedures, natlwd hypothese_ in goal-directed proof, and rewriting directives.

1 Introduction

Combinatory logic is based upon _he two colnbinators S and K:

S / .q;r= f x (.q:r)
Kxy=x

As is well-known, these two definitions are equivalent in power to Turing machines and the untyped

lambda calculus. Combinators have also been used as the basis of abstract machines that implement func-

tional programnfing languages, like Miranda [9]. General purpose computing machines based on combinators

have even been realized as hardware. It is amazing that such a simple syntax is so powerfifl.

Our purpose is to expoun(t another use of comI)inators, the K combinator in particular. On examination

of S and K, one can (fanciflflly t)erhaps) see a split between S, which takes cart, of the functions, and K,

which takes (:are of the data. Our interest is in representing particular external data in higher order logic.

We will use instances of the K combinator in HOL as a tagging mechanism. The approach depends on the

fact that an application

Ktl t2

has both the same type and the same meaning as tl. We can put whatever well-formed term we wish in

t2. Thus if we want to somehow associate t2 with tl, we (:an transparently replace t_ by K t_ t2. One use

of this flexibility is to have t., be data that can be interpreted by external tools. Our examtfies show that

the external tools can range froln object-language syntax facilties like parsers and prettyprinters to proof

support systeins, to automated reasoners.

As nfight be expected, the K combilmtor is also used in flmctional programming. For exmnple, in NIL,

with its left-to-right call-by-vahn' evaluation strategy, the infix function before defined by

fun (x before y) = x

has the following behaviour: an expression ._i before N is evaluated by evahlating M. then N. and then

the value of _1 is retmimd. Typically, evaluating N results in a side-effect (otherwise the use of before is

pointless).

From our viewpoint, K is far more usefld in higher order logic than in a programming language because one

can both create and eliminate apldications of K in logic, while only elinfination is possible in a programming

language.

In the following, we shall use ,,ome tags that are instances of the I combinator. This doesn't detract from

our message, as we are thinking (not in any formal way) of K as a family of combinators:

Ko x = .r

I_ 1 .Tar I :X

K2 J" ;/'1 x2 _ x
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Each K,, has t)l)e is(nnorphic to ¢_ -+ ;!¢" -+ (_. Only the first two nmmbers of this family are used in our
('xa mt)les.

1.1 Related Work

Kalvala has studied the application and implementation of tags [7]. Tile basic (tifferenee between her al)proach

and ours is that she changes the underlying term structure to insert tags, while our tags arise from definitions

and (t() not therefor(, require any (:hanges to the kernel of the logic. Howe uses a tagging mechanism to atta(:h

types to the untYt)ed terms of tim Nuprl logic in [5]. Hutter [6] provi(tes a tour de force of annotation

uses, showing how they can be used to support such disparate at)I)lications as first order theoreln proving
heuristics (e.g. basic ordered paramodulation), window inference, rippling, an(t analogi(:al reasoning. Like
Kalvala. Hutt(,r's approa(:h requires altering the basic term structure.

2 Numerals

Our imt)hmmntation of numerals for the natural numbers is similar to Harrison's in his HOL Light system. In
contrast with earlier implem(,ntations of HOL, numerals are no longer members of an infinite set of constants.

Instead they are values, constructed using three constants: 0, NB1 and NB2. The two NB ('onstants are
defined

NBI(x) = 2x + 1

NB2(x) = 2x + 2

Thus tile numt)er five is NBI(NB2(0)). This scheme has the advantage of unique representations for all
numbers.

We use a K0 ¢:omt)inator, called NUMERAL, t.o tag all numerals explicitly at the outermost level. As
Harrison notes in [4], this has the advantage that inHnerals are not sub-terms of other numerals. We have

also found tim tag idea useful in our implementation of arithmetic on these numerals. This imI/lementation

is based on Barras's imt)lementation of "call-by-value" rewriting [1], to which we pass a variety of rewrite
rules.

We begin by allowing addition to happen under the NUMERAL tag:

NUMERAL(x) + NUMERAL(y) = NUMERAL(z + y)

A na'/ve implementation of addition could then use the following rules:

O+x=x

x+O=x

NBI(x) + NBI(y) = NB2(x + y)

NBI(x) + NB2(y) = NBI(SUC(x + y))

NB2(x) + NBI(y) = NBI(SUC(x + y))

NB2(x) + NB2(y) = NB2(SUC(x + y))

Her(, the SUC ("successor") constant is being used liked a carry flag, to ripple along the rest of the (:om-

tmtation. Unfortunately, in the absence, of rules to pre-empt it, rewriting using the equations above won't

emulate this rippling very well because all of the x + y terms on the RHSs will be evaluated before tile carry
flag is used.

The first step of our solution is to not provide any rules for addition directly. Instead, all ad(titions have

to happen under a family of three P tags: P0, PI, and P.,, where P,,(m) is defined to have the value m + n
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(naturally, we won't be expazMing P, tezzzzs using this d(_fizzitiozz). P0 is thus another K0 )ag. P_ corresponds

to the use of SUC al)ove. P'2 is necessary because

P_(NB2(x) + NB2(!/)) = (2x + 2) + (2y + 2) + I

= 2(.r +_/+2) + 1

= NBI(P2(x + y))

Luckily, there is no (:omparabh' need for a Pa flag when adding numl)ers under P'2. We also change the ruh'
for addition under NUMERAL )() be

NUMERAL(x) + NUMERAL(y) = NUMERAL(P0(:r + !/))

Next, we need r(,wri)e rules to cal('ulate the eft'cot of PI and P'2 whell applie(l Io single argllltlellts (tile

situation does no) arise for P0):

P, (0) = NBI(0)

P_ (NBI(x)) = NB2(.r)

PI(NB2(x)) = NBI(PI(x))

P.2(0) = NB2(0)

P.2(NBl(.r)) = NBI(P, (x))

P.2(NB2(x)) = NB2(PI (:r))

Finally, our set of e(luations h)r addition (omitting x+ y clauses when a clause for y + :r is ah'eady t)resenl)
is then:

P0(0 + x)

P,)(NBI(x) + NBI(y))

P()(NBI(x) + NB2(y))

Po(NB2(x) + NB2(y))

Pj (0 + x)

P, (Ngl(x) + Ngl(y))

Pt (NBI(x) + NB2(y))

Pt (NB2(x) + NB2(y))

P2(0 + x)

P2(NBI(x) + NBI(9))

P_(Nnl(x) + NB2(y))

P2(NB2(x) + NB2(y))

= NB2(P0(x + y))

= NBI(PI(.r + y))

= NB2(PI{x + y))

= P)(x)

= NBI(PI(x + y))

= NB2(P_ (x + y))

= NBI(P,2(x + y))

= P2(x)

= NB2(P1 (x + ._))

= NBI(Pg(x + y))

= NB2(P2(x + Y))

Our P, tags can be seen as a specialised use of rewriting control, which we explore further beh)w in
Se('t ion 7.

3 Normalization

We have also used tags to implement a simple near-linear method for selecting and moving sub-terms to

either end of a chain of arguments to an associative and commutative operator.

For example, when writing pr()of tools, it can be useful to have a particular (:onjunet at the front of the

term. ill a known position. If the inl)Ut term is

Pt A P'2 A ... Q... A P,,

and we wish to have Q at the fronl of the term. one apl)roach to achieving this would be to t)rove the original

t, erlil e(tllal to a new onc

QA(PI A ... A P,))
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General tools fl)r d(,ing such reordering proofs will necessarily take at least ()(7_ log n) time however, and if the

terms are very big this cost can be significant. Alternatively, one Inight write a bespoke "terln-reorganiser'"

that careflllly descended the tel'Ill and did exactly the right sequence of transpositions to bring Q to the
front.

\\'ith tags, we have another alternative again. Define a "marker" K0 tag, and desceltd the term to wrap

it around Q. Then use the followillg theorenls and HOL's general rewriter to bring marker(Q} to the fl'ont:

P A marker(Q) = marker(Q) A P

P A (marker(Q) A _/?) = marker(Q) A (P A R)

(marker(Q) A P) A Ii' = marker(()) A (P A/?)

The final stage of the operation is to remove the marker wrapper from Q.

The use of the rewriter lnakes the imt)hmmntation very silnple, yet the efficiency will be dose to linear

(only a linear lnnIfl)er of swaps will be made, but the rewriter Inay (to solne unnecessary work traversing

other parts of Ill(, terul looking for rewrites).

4 Constraint Tagging

The second author's inq)lementation of Cooper's algorithm in HOL creates formulas that include terms of

the forIn

V P(")
1

for fixed n. Because n is fixed, such forinulas could be expanded directly into n disjtmcts, but it is more

efficient to keep the disjimcts unexpanded so that later simplification can reduce the size of n. This would

be the result of the so-called "&elimination" stage of the procedure, which might also replace n with an

expression parameterised by variables that are in turn bound by other finite constraints.

HOL doesn't have an explMt paraIneterised disjunction operator, so we represent such formaulas with

3i. 1 < iAi <_nAP(i)

For reasons of efficiency within the procedure, it is useful to be able to quickly locate the pair of constraints

on variable i, and there is no guarantee that they will always be Inaintained at the front of the body of the

quantification, as here. We wrap them inside a K1 tag, where the additional iIfformation is the xmriable i.

This Inakes it easy t.o locate constraints over particular variables. The formula then becomes

3i. K(1 _< i A i _< n) i A P(i)

5 Named hypotheses in proofs

Declarative proof interfaces have been a subject of recent interest in the interactive theorem proving com-

nmnity. In such a system [12, 3, 8, 13, 10], proofs are not given as a sequence of commands that alter a proof

state--a procedural proof - but as a sequence of high-level assertions that closely follow the outline provided

by a rigorous informal proof. Declarative proof systems offer readability and consequent advantages such as

learnability and maintainability. In these systems, however, the original procedural proof interface which

is often appropriate in the heat of a proof is either lmavailable, hidden, or deprecated.

This motivates the study of how coInbinations of declarative and proeedural proof may be achieved.

In fact, Harrison's work implemented declarative proof by procedural proof. However, he implemented a

separate proof interface which one had to use to perform declarative proofs. In contrast, later work by

Wiedijk [11] augmented the native procedural proof interface of HOL with declarative elements. One could

Iningle declarative steps with procedural steps, or indeed use only declarative steps. Importantly, oifly a single

interface to proof was required. Ulffortunately, Wiedijk's iInplementation was mostly aimed at showing how
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(,asyit is to build such an int_'rfitct, (it took about 40 lines of ML), and hasn't yet been developed into a

user-friendly inl erSic(,.

An important aspect of declarativ(, l)roof is the attaching of names to hypotheses. In contrast, an impor-

tant aspect of procedural (tactic) proof in the HOL88/90/98/4 illq)lementations of H()L is that hypotheses

in a goal are not named: they are a set. (The pros and cons of this have been extensively discussed in the

HOL user comnmnity.) Thus aily at tenlpt to implement declarative proof in these systems will have to solve

the problem of how to name and use hyi)otheses without having to rebuild the elltire infrastructur(' of tactic

proof.

Tags can be used to imt)lement named hypotheses. W(, simply define a version of K1 as a logical constant

Named (.r : bool) (!j :_) = ,1'

Then an assumption .4 can 1)(_ named n I)y K-expanding it to Named .4 1,. Once a few simple tactics arc,

written to access hyt)otheses by name. named hyi)otheses can exist in fllll harmony with unnamed hypotheses.

This gives us a clean basis ut)on which t t) try to build de('larative proof interfaces that co-exist with the

existing interfaces.

An interesting subtlety, perlml)S spec:ific to HOL, is how to use named assumt)tions in tactics. For instance,

the first-order model-elimination lactic MESON_TAC has type tJtTtl list --+ tactic. It uses the supplied

theorems to prove a goal. Supt)os(, we wish to provide a function ASM of type .string --+ thin for fetching a

named assulnption from the hypo!heses of a goal aim making it a theorem, by assmning it. Thus we would

be able to apply, e.g., MES01q TAC [ASN "foo"] in order to use an assumption labelled with /oo to prove a

goal. However, the expression ASM "foo" nlust evaluate to a theorem, and the type of ASIvl forbids ASM from

accessing the goal! (Using top_goal won't work.) Devious hackery is required. We manage to wriggle free

of the conundrum by having ASM return an instance of reflexivity t- foo = foo, where foo is a variable. The

preprocessing phase of MESON_TAC which does have access to the goal has been adjusted to find

such trivial instances and turn th(,m into accesses into the hypotheses of the goal.

6 Other operations on hypotheses

Two other applications of tagging sut)i)ort the abbreviation of subt(,rms and the hiding of hypotheses.

1. In larger proofs, fl)rmulas with many repeated subterms can occur. To aid readability, abbreviation

tactics have been written. Such a tactic: will create a new assumption v = ._I where 3I is the term to

abbreviate, and _, is a variable acting as its abbreviation, and replace all occurrences t)f 3[ by v. However.

such abbreviations (ton't work well with other tactics. For example, rewriting with the assumptions will

re-expand any occurrences of _, in the goal. For this reasoiL abl)r(,viation tat:tics add the hypothesis in the

reversed form 3I = v. Ht)wev('r. this refinenmnt is defeated by ('leverer tactics that at(emil( to eliminate

(by substituting throughout the goal) all equality hypotheses t' = M or ,lI = v. 1 Such hypotheses often

occur as the result of rewriting with injeetivity theorems.

The workaround is to introdu('e a K0 tag

Abbrev (x : bool) = x

and then an abbreviation v = Al would be represented by the expansion Abbrev0' = 31), and would

be resistant to elimination by clever simplification tactics.

2. Another problem with larger proofs is extraneous hypotheses that clutter up the assuml)tions. They

make the flfll goal hard to read, slowing interactive proof development. One way to deal with this is

to eliminate them explicitly via a weakening tactic, but sometinms that is overly prescriptive. Another

approach that may t)(, useful would be to to introduce a K(_ tag

Hidden (x : bool) = x

anti have the system i)rettyi)rinter omit assumptions of the form Hidden Al.

1 Not(, that the variable is restrict(,d to occur on only one side of ttw equality, in order to preserve provability.
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7 Rewriting directives

A basic flmctionality for a rewriter is to take a list of rewrite rules and apply them exhaustively to a term.

Many other styles of rewriting are usually also require(t in l)roof assistants (rewriting with/without a back-

ground set, rewriting with/without the current assumptions, conditional rewriting, higher-order rewriting,

eta), which leads to a large number of very closely related rewriting entrypoints, distinguished from each

other by elaborate naming conventions, or multiph_ options, which may be confusing or hard to learn.

We can tackle some asl)ects of the ('omi)lexity of this interfac.e by using tags. Notice that the user may

not want to treat all rules in R equally. For examt)le, sut)t)ose one rule k- r should/)e used twice, and the rest

('xhaustively. Our solution to this scenario requires some help fl'om the nteta-language. We define in HOL

BOUNDED (b : bool) (_ : a) = b

and in ML

datatype usage = UNBOUNDED

I BOUNDED of int ref

fun htmost th n = < ... create [- BOUNDED th n ... >

An invocation htmost (_- Al) i, where i is an integer, creates the theorenl }- BOUNDED kl n, where ,_ is

a variable named i. This enables us to invoke the rewriter (which has to I)e altered, see below) with a list of
theorems as folh)ws:

REWRITE_TAC [Atmost r 2 .... ]

The rewriting engine tu'e-proeesses each rule to see if an}" are tagged with usage information. Those that

aren't are paired with the ML value UNBOUNDED, and added to the set of rewrite rules. (Each element in the

background set is paired with UNBOUNDED, reflecting the idea that. such rules should be used exhaustively.)

A rule that is tagged with a usage restriction is paired with the ML value BOUNDED (ref n), where n is the

supplied restriction. Once each rule has been mapped to being UNBOUNDED or BOUNDED, the rewriting process

starts. When a rule is matched against the subterm being rewritten, it can be either unbounded, in which

case the rewrite goes through, or bounded, in which ease there is a check to see if the rule has been used

up (i.e., its reference cell holds '0'). If so, then the replacement doesn't happen. If not, the reference is

decremented, and the replacement happens.

In HOL, only minor changes were made to the rewriting mechanism in order to have it process su(:h tags.

What is pleasant is that the code is completely backwards compatible: existing applications of the rewriter

in tactic scripts do not need to be changed.

As flnure work, we wish to add in a rewriting directive for conditional rewriting. There are essentially

two ways to implenmnt conditional rewriting in goal-directed proof. The standard approach demands that all

conditions be proved before replacenmnt takes place. This is usually the desired behaviour, |tilt. occasionally

the proof of the conditions fails, and it (:all become an awkward business to get the rewrite to hapt)en. The

alternate approach a.s._;u"icte8 the conditions, thus ensuring that the rewrite happens, leaving the conditions

to be polished off later. Accomodating the two styles would seem to require multiple entrypoints, but we

envision having a Force tag that would signal which manner of rewriting should be used on a conditional

rewrite rule. One interesting outcome is that it may be possible to perform induction proofs via forced

and bounded higher-order rewriting (since an induction theorem has the form of a conditional higher-order

rewrite).

8 Conclusions and Future Work

\%_ have seen how some common implementation issues in higher-order logic theorem provers can be handled

with a notion of transparent tagging. We hope that giving a name to a cmnmon practice will encourage others

to come forward with their own tales of using K to support proof.
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Th('(l(wi('eisnotwithouti!sdrawbacks.For cxanq)le, it s(,ems best to restrict the scope of a tag's usag(,:

tags are ]rest when only their inlpienmntor is aware of their existence. Thus, el|Hi|hating a tag as soon as

l)ossil)le seems to be good pra(tic(_. Otherwise, unrelate(l i)roof tools may ne('d to know a|)out tilc tags used

by each other, making for a d(wel(q)ment nightmare. It is true t|lat SOtlle tags, like those for mml(,rals, do

persist: however, they don't se(,m to ('ause much trouble (perhaps that is because they repr(,sent constants).

Another (related) worry is nesting of tags. In that case. the semantics of K mean that no ('onfllsion of

meaning is p()ssil)le, but confl>ion of proof tools may certainly hal)pen. For example, what if an assumption

is named twice? With (tifl'erent tlmn(,s'? Tag creation and eliminati(m could h(' made i(lenq)()tent, lint the

issue remains, est)ecially when tags SUl)t)orting different t)roof tools overlal).

A further linfitation is thai tags need to be well-tyt)ed terms. If that is a problem, one can use strings,

unintert)r(,te(t constants, or the names of fre(, variables in or(let to provide tags that can be externally

interpr(_ted. If, for example, one wished to attach hyt)erlinks in th(' logic to theorems, a string tag

URL (t : heel) (s : string) = I

might 1)e a possibility.

We have seen how tagged terms may be implemented: what at)out tagged types'? To fl)llow our initial

insight, we need types that act like K. This may correspond to so-(:alled phantom types, in which sut)erfluous

tyt)e variables are used to enforc(, extra invariants via type inference. The paper [2] t)rovides a range of

at)plications of t)hantom types in interfacing C to NIL, including the use of tyt)e inferenc(' to enforce array

bound constraints. Thus, like tags, phantom types are useflfl for building interfaces between a tyt)e theory

and the outside world. It may |)e possible to create phantom types.,in HOL as well.
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Real Numbers in Real Applications
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Abstract. The formalization of inathemati(:s in theorem t)rovers and

proof checkers, including continuous mathematics such as real analysis,

is s<mmtimes undertaken purely fl)r intellectual interest. For example.

the Mizar .Mathematical Library includes a large nunfl)er of analytical

theorems. But a surl)rising I)henomenon is how useflfl non-trivial math-

ematics can be in verification applications.

One might guess that for verification of concrete floating-point algo-

rithms, only the most basic '_algebraiC' properties of reals and simple

combination formulas for transcendental flmetions would be needed. But

we will draw on our own experience to show that this is riot so, and one

needs a surprising amount of tmre niathematies. Thus we can, should we

so wish, justify the forinalized (levelol)ment of nluch apparently "impra(:-

tical" pure mathematics even in crudely utilitarian terms.
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Abstract. MathWeb is a system which allows mathematical software programs to intercomnmnicate.

The aim is to allow manual or automatic queries from, say, a higher order theorem prover to a first

order theorem |)rover or from a computer algebra system to a theoreIn prover. We ])resent an imph,-

mentation of a basic PVS service in Math\Veb. The service offers a black box which takes PVS-syntax

conjectures and inti,rl)rets th,' resulting PVS Olltl)llt as to whether the t)roof attempt suet:ceded or not.

The main imphmtentation allows access to the PVS Real Analysis Library and defaults to running the

grind strategy ("strategy" is the PVS term for what is often called a tactic in other systems) nn the

submitted conjecture. Customisation to access other libraries and strategies is possible, and we present

an instantiation of this to access Gottliebsen's continuity checker for the Real Analysis Library. \\'e

a/so give an overview of the difficultie, s of accessing PVS is this way with suggestions for abstracting

the (:ore prover away from the existing EMACS interface,

1 Introduction

In this paper we present an initial implementation of a PVS-MathWeb-Interface [PVS-M\\'I] and details of

the t)roposal for a flfll implementation of such an interface. PVS is a higher order theorem t)roving system

designed for interactive use primarily in formal methods deveh)pment. Theory developments in real analysis,

however, have made it a useful tool for work in supporting computer mathematical assistance but the need

for theorem proving technology in this area lends itself more to a black box theorem proving system than an

interactive theory development platforin. In addition, interoperability with various other systems is important

in this at)t)lication domain. The MathWeb software bus is a usefld broker and integration architecture for

such systems and as such is an _)bvious t)latform into which to link the PVS system, and in particular the

real analysis capabilities of Gottliel)sen's development [8, 9].

We begin with some background inforrnation on Math\%_b in the next section and then proceed with

background on PVS and the Real Analysis Lit)rary. Next we present some of the problems of running PVS,

designed to be an interactive theory development system; as a black box prover in section 4. In sections 5 and

6 we first t)resent the proposed PVS-MWI and then the prototype implementation. We finish by considering

the ramifications of this work and flm_re directions for such a development in section 7.

2 Background: MathV_reb

The MathWeb software bus has bee, n developed, primarily at the University des Saarlandes, to act as an

intermediary between various pieces of software which perform symbolic calculations of some form. The

original aim was to allow theorem provers [TP] and computer algebra systems [CAS] to interact. Previously,

a number of pairings of such systems had been connected but this necessitated working out the exact details

of external comnmnication for each systein in turn. The advantage of a system like the MathWeb software

bus is that an3: system connected to it can be connected to ally other system without worrying about

operating system level details of their comnmnication. In particular, any system which has a straightforward

command-line interface can be fairly easily connected to MathWeb.

The details of connecting systems together requires more than simt)ly the ot)erating system level of

connections, of course. Problems which nmst still be addressed for each system include:

* This work was supported by the EU Grant Caleulemus HPRN-CT-2000-00102.



148 Adam,_ rt al.

Translation between the object languages of the TP or CAS.

Control of the processing occurring in each system.

Synchronisation of a nmtual symbolic calculation effort.

Use of the OZ language (using the Mozart implementation: see [12]) allows MathWeb to provide a solid

platfi)rm in which these problems may be addressed while at the same time providing a flfll.v transparent
system of Comlnunication on a local host, a LAN or fiflly distributed over the internet.

3 Background: PVS Real Analysis Library

First we consider the uses of formalisations of real analysis in general and then give details of t}m h)rmalisation
in PVS.

3.1 Formalisation of Real Analysis

The formalisation of real analysis and related continuous mathematics topics, is cnrrently an area of great

interest. Most of the major higher order logic systems currently available have one or more efforts underway
to drvelop a formalisation of n_al numbers, transcendental functions, or similar. This development stems
from a mmlber of different application areas, including:

- Formal Methods used to support the development of air traffic control systems. This requires a formali-

sation of geometric aspects of air flight, which requires trigonometric functions as part of the library of

underlying concepts: [3]. The developnmnt in PVS of a Real Analysis Library has been useful in such
work.

- Formal proof that a hardware implementation of the IEEE floating point operations require an underlying
concept of the operations over the reals to be present to allow formal proof that the rounding operation

is not introducing errors: [10]. This led to the development of a Ileal Analysis Library in HOL-Light,
much of which has been ported to HOL-98.

Development of theories of real analysis, complex analysis and related topics are available or under current

development in PVS [5,8], HOL (HOL-Light and 98) [1()], Isabelle (Isabelle/NSA) [6], ACL2 (actually a
variant called ACL2(r)) [7] and Coq.

3.2 The PVS Real Analysis Library

The particular xvork we are interested in here is the development of a Real Analysis Library for PVS.
The initial work on this library was done bv Dutertre [5]. PVS already included a base type of real as

an axiomatised sub-type of number. Dutertre developed various parts of fairly abstract real analysis. That
development started with a theory of sequences of reals (PVS has polymorphic sequences as part of the base

system), developed explicit convergence criteria for sequences and then fimetions on the reals, and finally
defined abstract notions of continuity and differentiation. With some changes to make concepts such as

continuity and differentiation more usefifi for concrete functions, Gottliebsen [8] extended this library with

further work on real functions, including the definition of infinite sequences and power series. The definition

of power series allowed an analytic definition of a number of the transcendental functions, including In, exp,

sin, cos an tan. The properties of these fimctions were developed as a lemma data base to the point where

they were sufficiently characterised that filrther lemmas can generally be proved without reference to the

underlying power series. The definition of any new transcendental function would require a power series style
of definition, however, and a similar background of properties would need to be added for the new function
to be usefifi.
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3.3 Automated Proving Using the PVS Real Analysis Library

The PVS Real Analysis Library was t)rimarily developed to sut)port research in improving the capabilities of

Comlnlter Algebra Systems [CAS] such as Maple and Mathemalica. As such, the aim was to couple a CAS

and PVS together to produce a stnmger (i.e. capabh, of producing correct answers in more circumstances).

The original project looked primarily at the contents of the computational mathematics being considered

by each system rather than at practical measures for coupling such system together. The utility of PVS in

these cirt:ulnstances was as a black box which could handle logical side conditions on various coInputations.

In particular th(' inability of CAS to show satisfiability or unsatifiability of sets of constraints on real-valued

parameters with equalities and inequalities involving transcendental functions, causes great tiroIilems in the

area of definite integration (amongst many others), hi addition, the same problenl area of definite integration

l('a(ls to a need for a good c()illinuity checker for parametri(: real flmctions, another area in which GAS are

t)articularly weak.

The automatic t)roving fcatures of PVS were originally designed to perfornl "routinC' tasks during inter-

active proving. The SCOlte of these "routine" tasks has gradually increased to the point where these autonlatic

routines can now handle fairly complicated probhuns without any user intervention. PVS' automated proof

procedures build tlp in a hierarchy of rewriting, ground term evaluation and definitional unfolding. The top-

level generic autonmt(,d procedure which we are interested in is grind. This strategy has a large mmiber of

optional arguments which control the operation of the underlying procedures to guide the proof search. While

PVS has a strategy language in which specialised strategies may be developed, it is often more usefld to

use this language to define a special-purpose strategy which simply calls grind with appropriate arguments.

The continuity checker developed by Gottliebsen [9] uses this method. Investigations continue into the best

parameter settings for grind to cope with satisfiability problems.

Recent work at the NASA Langley Research Centre and ICASE has led to some interesting developments

ill special purpose tools for amomated proof of formulae involving real numbers. See [4] for details.

4 Running PVS as a Black Box

As mentioned above, PVS was designed very much as an interactive system. The developers of the system.

who are also themselves one of the primary user groups, use the systoin in this way. Only a few small projects

have tried to use PVS as a back end system with a different interface and as such, the integration of PVS

as an automated system available via Math\_b produces some interesting implementations problems. This

section will look at the structure of PVS and explain where the MathWeb interface should sit in the system.

4.1 The Structure of the PVS System

The main user interface for PVS is written in Emacs (also compatible with XEmacs). The core engine is

written in Allegro CoInmon Lisp and distributed as a run-time library only. The PVS development team

are considering options for releasing the source code of the core engine, but it was not available at the time

this project was undertaken, although Owre of SRI has [leen particularly helpful in identifying the hooks

between the core engine and the Emaes interface. On first evaluation, the system, is deceptively simple, and

may be considered as shown in figure 1.

Looking closely at the details, however, we see that there is not such a strong divide between the operations

of the Emacs Lisp Interface and the Allegro CL core. The Allegro CL Core writes information directly to

temtlorary files, for instance, which the Emacs Lisp Interface then copies t.o the permanent storage position.

Message passing is also not quite as simple as we would wish: the Allegro CL Core prints out large amounts

of text delimited 173"message markers such as

: pvs-msg : end-pvs -msg

which are parsed by the Emacs Lisp Interface and displayed (or not) in the correct manner (via the interaction

window, via the message bar or written to Emacs buffers). In addition, as well as input fl'om the user, the

Emacs Lisp interface controls the timing with the core engine by sending appropriate signals to let the core

engine know that it is ready to process the next part of its output. The Allegro CL Core waits for these

messages before it proceeds with the proof attempt.
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Allegro CL Core

Fig. 1. A Naive View of the PVS System

4.2 Design of the PVS-MWI

The eventual aim of the PVS MathWeb service is also to be able. to offer an interactive proof session. This

would comprise simply the ability to perform interactive proofs and to parse the produced proof script. The

theory management aspects, such as adding new theorems to a library, are not expected to be supported in

this manner. For the moment, and as a first step, however, we aimed at allowing the MathWeb server to senti

a problem in PVS syntax to a PVS core engine running as a stand-alone process, and to interpret the results
as success or failure. This initial project aims to develop an understanding of the issues and to identify the

aspects of PVS that are suitable for such an interface, and those which require revision to ensure a robust

system.

Given that most PVS development and usage is expected to continue via the good interactive interface

already available, the ability to talk to an external server such as Math_\_b is seen as a side goal of the main
development, but one which should not interfere with the primary development path. Thus we present a

design here which would allow our aims of an atltomatic tit" interactive proof session to he sent to PVS, an(t

the resulting proof script to be interpreted. Then we will present the aspects of PVS which are relevant to

this design, and finally present the existing state of our interface, which achieves the basic aim of allowing

automatic proof attempts in PVS with the very limited result of checking for success or failure. The design

presented here is to work with the PVS system in its current form. See section 7 for a discussion of changes

to the core engine which would allow a cleaner PVS-MWI interface without degrading with the existing
interface.

4.3 Existing PVS System

Figure 2 shows a more detailed breakdown of the actions of the PVS Allegro CL Core and the Emacs Lisp
Interface

The Interface reads files from the permanent file store, which provide persistence across sessions fi)r theory

development, proof scripts and other support mechanisms. It also controls infornmtion flows into the Emacs

buffers which hold the raw output of the Core Engine, the interactive session with the user and theory/proof

files currently under development. The Core Engine outputs messages to the Interface (interpreted via the

raw output buffer), and also writes proof scripts directly to the temporary file store. Most importantly of

all, the Interface sends commands directly to the Core Engine. These commands include start-up routines,

the loading of theory files and libraries, and proof commands.
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Fig. 2. A Model of PVS Operation

4.4 Automated Proving in PVS

Before we consider our proposed and initial implemented interfacos to PVS in MathWeb. we must present

an unusual aspect of PVS, which will inform our discussion later. PVS is not strictly an LCF-style system.

ProoN are not necessarily produced by a sequence of atomic logical operations. Instead, a number of the PVS

strategies are written as compih,d programs which are linked in to the system. This was a design decision

to enhance the usability of PVS by speeding up the proof process of particular heavily used strategies

such as grind. Since PVS does not produce proof objects a.s such, but only proof scripts, this does not

lead to problems generally. In order to allow greater assurance, however, PVS has a facility whereby these

external proof procedures can be called as transparent strategies instead. These transparent versions expand

to individual logical operations, and it. is expected that the actions of the transparent and opaque versions

of the strategies will have the same effects given the same inputs. The thinking behind this is that while
proceeding with a development the user is interested in quick results from the decision procedures. Once

a dew,h)pmem has been oomph,ted the user may then gain extra confidence (or insight into the resulting

proofs) by re-proving the theor(.ms to expand the proof procedures. This will become important when we
consider the output of a call to PVS from an external syst.em, which may or may not require a proof object
as well as an indication of success or failure.

5 Proposed PVS-MWI

To produce a complete Math\_,_b service for PVS we wish to replace the interface segment with a new facility.

This new PVS-MWI need not dupli(:ate the entire flmctionality of the existing interface. For instance, it

need not write to permanent PVS files. Nor is there any requirement to write information t() Emacs buffers.
However, it will need to read from the permanent files of the PVS installation, and from the temporary files

written by the Core Engine. The PVS-MWI also needs to communicate directly with the Core Engine.
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5.1 The Automatic PVS Proof Service

As mentioned above, we are not aiming to provide a r(@acenmnt for the existing Emacs interface. Instead

we aim to prt)vide a PVS server which will alh)w proofs to be performed either automatically or interactively

over a remote connection, ahnost certainly via another t)rogram. While much of the Ema(:s interface deals

with develot)ing theories an(t associating proofs with their fi)rmulae etc., we are not conc(,rn(_d with such

issues. However, there is one isstle regarding theories that we must address: the context in which a fornmla

to be t)roved is valid. It is unlikely that many users will wish to use simt)ly the t)ase PVS logic and initial

devehqmmnts (the "prelude" tlwories) only. It is more likely that a particular the()ry context will be required.

such as the real atmlysis library, the context offered by the current version of the PVS-MWI.

Since there is a substantial time-lag in loading large theories such as the Real Analysis Library. it is

expected that each service offered over MathWeb will actually be an image with the api)ropriate the<)ry pre-

loaded. Thus, instead of simply asking for a PVS service, the client program would have t() specify PVS+Lib.

where Lib might I)e Reals. To ensure efficient comnmnication, the ideal interface should also indicate the

type of information expected as a return. There wouM be no point in returning a proof to a computer algebra

system for instance, whereas ihnega requires prover services to return an appropriate proof ot)ject. We can

classify the modes of operati(m required of the interface as shown in table 1 bel_)w.

[ Query Mode ] Responses

I Prove Positive, No Object ] True/Unknown
Prove Positive&Negative, No Object[ True/Unknown/False

Prove Positive, Object [ True/Unknown&Proof
Prove Positive&Negative, Object ]True/Unknown/False&Proof

Table 1. Modes of PVS Interaction

As mentioned above, the modes which require tim return of a proof object (in the case of PVS an expanded

proof script is the best that is available) will require a slightly different form of the strategy command passed

to the PVS core engine. Thus the command in a client which passes a conjecture for proof to PVS should

have five arguments:

1. the conjecture (a formula in PVS syntax or another syntax which the PVS-MWI can convert into PVS

syntax);
No default value;

2. a flag indicating whether an attempt to prove the formula True is required or an attempt to prove the

fornmla true or false: PVS does not return "False", it simply returns True or fails to complete a proof;

Default value: True Only;

3. the name of a strategy to ('all to attempt to prove the conjecture;
No default value;

4. the name of the theory in which context the proof of the conjecture should be attempted;

Default value: prelude;

5. a flag to indicate whether a proof object should be returned;
Default value: False.

Should a PVS-MWI contain a translation mechanism from, say, OpenMath notation into PVS notation then

a flag indicating the syntax used in stating the conjecture may be needed. Likewise should the interface be

capable of returning proof objects in different formats then an extra argument indicating the required return
format would be useful.

Note that the lack of a default value for the strategy to be applied allows for an "empty" strategy to be

passed in to indicate that a user wishes to perform an interactive proof.

The current interface must perfi)rm a fair amount of processing of PVS I/O at start-up and during each

proof attempt. In the long run much of this work should be ameliorated with access to extend the PVS

Allegro Common Lisp Core with appropriate flags indicating the status of PVS in a "black box" mode.



A PVS Service fi)r MathU,'el, 133

It should be noted that there are a mmtber of nou-standard cases to be considered for a fizll-fi,atm'ed

automati(: t)roof service:

- A conjecture may t)e submitted that is syntactically or tyl)e inc(,rrect.

- PVS does not attenlt)t to i)rove a conjecture fidse, so any false conjecture submitted will simply lead to

a faihu'e of 1)r()of. indistinguishabh' from a ease where the pr(_of strategy is not strong enough to prove

the conjecture.

6 Current Version of the PVS-MWI

In this section we will describe the current minimal iml)lementation of the PVS-MWI. This is a working

service, available for installation as t)art of Mat hV_'el), hut includes only parts of the flfil service describ(,d in

the i)revious section. See tit(, later _ection 7 fl)r details of ongoing d('veh)lmlent in this l)roject.

6.1 Starting PVS

Originally, running PVS in a shell required the execution of the A]h,gro Common Lisp image direeth _, rather

than invoking the (tistributed shell script which normally starts PVS. Since then Owre has added a switch to

the shell script which runs PVS as a stand-alone program: pvs -raw. This still only starts the core engine of

PVS, however, and there are various steps which must be then taken to t)ut the syst(,m into a usable mode

as a t)roving tool. The first of these has been made obsolete by the most recent release of PVS (2.-1). We are

in the process of updating the PVS-MWI to take account of this release,

1. Load the latest patch files (if patch files are present).

2. Change to the "Package" PVS (see the Common Lisp documentation [la] for a description of packages).

3. Change the working directory in which P\'S operates (in interactive sessions this is called the context),

4. Run a simple test proof cff "1 =1" using "(grind)" in the context of the Real Analysis Library. This

pre-loads the entire library into the current image.

6.2 Successful Proof Process

The PVS Core Engine fimction prove-formula-decl is the function called to start the t)roof process. The

arguments of this flmetion include the conjecture for which proof is to be attempted, the PVS theory which

forms the context of the conjecture and proof attempt, and a strategy which is to t)e apt)lied.

At specific points in the proof attempt process, the PVS Core Engine outputs a message indicating to

the Emacs interface that it is in a particular state and rea(ty to proceed with the next stage of the t)roof.

At each of these points, the PVS Core Engine expects a token from the Emacs interface to indicate that

it is ready to proceed with the next t)hase of the proof. This interaction is due to the requirements of the

Emacs interface to display messages, update the interaction buffer, and copy text to and from temt)orary

file storage. The sequence of iilt eractions is shown below. The text in courier typeface is the output from

the PVS Core Engine (... in(lieates other lines appearing first). The conjecture being proved is NOT (0=l),

t)y llSillg the strategy (grind) in lhe colttext of the Real Analysis Library.

• . °

:pvs-msg Formula typechecked :end-pvs-msg

:pvs-eval (setq pvs-in-checker t) :end-pvs-eval

This shows that the Core Engine has completed type che(:king of the conjecture. Note that this does not

necessarily mean that type checking has succeeded, simply that it hasn't failed. See section 7 for a discussion

of this. The next line in(lieates that the Core Engine is now entering proof check mode. Once a token ("t"

is appropriate) has t)een sent to the Core Engine, we get the following:
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test :

{-i} (o = I)

I .......

Rerunning step: (GRIND)

Trying repeated skolemization, instantiation, and if-lifting,

Q.E.D.

:pvs-eval (setq pvs-in-checker nil) :end-pvs-eval

The name of the conjecture being proved (important when the interface is maintaining a record of a theory

and linking a proof to lines of a theory file) is test (the specification of the conjecture in the argument of

prove-formula-decl is required is have a name). The initial form of the sequent in the proof is printed and

the steps to be automatically attempted in the roof are shown (in this case simply the single step (GRIND)).

The progress of the strategy is reported (Trying...) and then success is indicated with Q. E.D. fi)llowed by

the fa('_ that the Core Engine is dropping out of proof checker mode. Again, a token is sent to tile Core

Engine, resulting in the following output:

:pvs-eval (pvs-ready) :end-pvs-eval

A final token ._ubmitted to the Core Engine returns "T". This is the evaluation result ofprove-formula-decl,

but is not an indication of the success or failure of the proof attempt, simply a place-holder return value.

6.3 Unsuccessful Proof Process

The above sequence shows what happens when PVS is presented with a conjecture which is provable by

the strategy requested. This is not always the case, however, so we must consider how the Core Engine acts

when presented with a conjecture unprovable by the strategy. This can be because the strategy is not strong

enough to prove a true conjecture or because the conjecture is false. Note for our initial implementation of a

PVS-MWI we have not implemented a recovery scheme for cases where an ill-formed conjecture is submitted

(either with a syntax error or an identified type-checking error). Nor has recovery from an apparent "infinite

loop" been implemented by sending a break signal and recovering from the resulting break level of the Allegro

Common Lisp session in which the Core Engine runs.

To demonstrate an unsuccessful proof attemt)t we will present the interaction which occurs when the

conjecture 0=1 is t)resented to the (grind) strategy:

• . ,

:pvs-msg Formula typechecked :end-pvs-msg

:pvs-eval (setq pvs-in-checker t) :end-pvs-eval

An identical start to the previous sequence, with the formula correctly type checked and the Core Engine

reporting that it is now in proof checker mode.

test :

I .......

{i} (o = i)
Rerunning step: (GRIND)

Trying repeated skolemization, instantiation, and if-lifting,
this simplifies to:

test :

I .......

[i] (o = i)

***Warning: Fewer subproofs (0) than subgoals (i)

No change on: (SKIP)

test :

I .......

[i] (0 = i)
Postponing test.
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test :

I .......

[i] (o = i)

:pvs-eval (setq pvs-in-checker nil) :end-pvs-eval

Having received a token, the (grind) strategy this time fails to prove the conjecture. The critical point here

is actually the lack of all at)pearance of Q. E.D. being the easiest met hod of detecting faihlre. Another token

is then sent to tim Core Engine, which has indicated that it has drot,lmd out of proof checker mode:

Would you like the partial proof to be saved?

(***Old proof will be overwritten.***)

(Yes or No)

Now we see the unwanted interaction designed for the full Emacs interfiu:e confing into play. asking the user

for instructions with regard to t iw partial proof developed in attempting to prove the Coiljet'ture. The Core

Engine actually does very little del)ending on the answer here. The primary operation is carried (lilt I)y the

Emacs Interface in copying th(! temporary proof file into the appropriate part of the proof file underlying

the current theory. On sending "yes" the Core Engine returns:

Use M-x revert-proof to revert to previous proof.

:pvs-eval (pvs-ready) :end-pvs-eval

For the purposes of a replae_unent interface, however, "no" is a more appropriate rest)onse, to which tile

Core Engine gives:

:pvs-eval (pvs-ready) :end-pvs-eval

After either of these, a further token is required to reset the Core Engine to it's top-level read-eval-print

loop, with the final response of:

( .... (GRIND))

that is, the partial proof.

6.4 The Implemented Basic PVS-MWI

Thus the basic PVS-MWI that has been implemented has the following features:

- Only the actual conjecture (in PVS syntax) is a required argument. To this is added the "test: leinma

" text. Default values of the Ileal Analysis Library for the context and (grind) for the strategy are

included.

- Three inain functions are provided:

Function Description

prove Simply attempts to prove the conjecture and returns "True" if sue-

cessfld. If this fails it returns "I Don't Know!"

provetf Attempts to prove the conjecture True and returns "True" if suc-

cessful. If this fails then it attempts to prove the negation of the

conjecture and returns "False" if this succeeds. If both fails it re-

turns "I Don't Km_w!"

proveets This assumes that the conjecture is of the form of continuity of a

real-valued flmction. It calls Gottliebsen's eontilmity-('heeker (cts)

and returns "]7rue" if this succeeds and "I Don't Know" otherwise.

Proof of discontinuity has not been implemented so proof of the

negation here is not supported.

- In all case.s where a proof attempt fails, the PVS-MWI answers "no" to the question posed about

recording the partial proof and corroetly resets the Core Engine to the top-level prompt.
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7 Conclusions and Future Work

Tile existing interface is sinq)ly a prototype and requires a fifir amount of flu'ther work to be truly useflll,

Nevertheless. the exercise has proved very useflll ill a number of ways, which we will consider here, I)efore

addressing the flmlre direction of this work.

Taking a system such as PVS which was designed as an interactive theory development platform with

a specific Emacs interface, and allowing its use as a black box back end theorem prover has proved more

conq)licated than might be initially exl)ected. However. the areas where ot)tional settings may t)e added in

to make this an easier proposition have now been identified and development of PVS in this direction should

not prove difficult.

Related work on systenl specific interface such as the Maple-PVS link [1] should also benefit from this

exl)h)ration of tile PVS systenl and developments in this area.

\:arious asi)ects of the MathWeb softwm'e bus have been tested and occasionally broken during this

developlnenI. This pat)er has not focussed on such details as race (:onditions between the interface and

the PVS Core Engine; zombie PVS processes caused by failures of the broker architecture: and similar.

Nevertheless the development of the MathWeb architecture has undoubtedly benefitted fl'om including PVS

in its fanfily as proof system server. Developments in using other higher order systenls as servers in Math\Veb

will be easier following the lessons learned here. Specification of a generic black box autontated theorem

proving service derived from the PVS service is one concrete outcome for the Math\Veh system from the

prototype PVS-MWI.

7.1 Exploration of PVS as a Back End System

As mentioned many times above. PVS was primarily developed as a theory development platform and it will

certainly continue to be used in such a fashion. Indeed, further enhancement of the capabilities as a black

box system require a good theory development platform to be availatfie. However, identifying the areas of the

existing PVS syst.em where the theory development platform is unnecessarily embedded in the core engine

will prove a useful exercise in infornfing future development of PVS. Once a theory has been developed it

is quite often usefill to allow black box use of automated strategies in the context of that theory and the

work shown here will hopefully allow further development of the PVS Core Engine to support this need.

Availability of PVS theories as black box systems should also stimulate development of more and more

complicated theory systems in addition, benefitting the PVS community as a whole.

7.2 Implementation of the Full PVS-MWI

The main task of the develot)ment of a flfil PVS-MWI would be the development of an interactive proof

ability. Extension of the existing prototype to cover black box proving as shown in section 5 should be

relatively straightforward, providing changes to the PVS Core Engine as described below are undertaken.

Some rationalisation of the existing system would be required, most specifically a separation from the

current dependence on the Real Analysis Library as the default context. An early decision would need to

be made as to whether a generic PVS prover might be offered or whether specific provers offering a single

context would be better. Each has its advantages, and the decision would also be informed by the changes

that might be made to the Core Engine of PVS.

It had been thought that automated proof checking using prove-formula-dec1 generated separate type

checking conditions (tccs). On conmmnication with PVS developers, however, it turns out that tees generated

when l)erforming a proof with this function are folded into the goal, so that whenever "Q.E.D." is generated,

one can be sure that an)' tees have also been verified. However, this behaviour may be the cause of occasional

infinite loops during the automated proof attempts. A more sophisticated approach to using PVS as art

automated back end proving system might do something more intelligent with the tccs.

7.3 Proposed Developments of the PVS Core Engine

We list here suggested amendments to the Core Engine which are feasible without altering the existing Emacs

interface code subslantially.
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Switchingoffthe printing of rues! of tim messages.

- Not requiring a token passed ilt at the' various l)Oinls noted above.

- Ignoring the "partial proof" to t)(, saved or llOt wh(,ll ,vl failure of proof occurs.

- A robust limeout setting r(,turning a failure of the proof attempt after a certain mmflmr of CPU (3'cles.

- Defining a new proof fimction which returns a T or NIL as well as the proof if snccessflfl.

In addition, Allegro Comm_m Lisp run-tinm images of the Core Engine with various libraries prr-h)aded

wouht improve the efficiency of start-up of a PVS-MWI which offered servic_,s in those contexts.
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Abstract. We have finished a constructive fi)rmalization in the theorenl prover Coq of the Funda-
mental Theorem of Calculus, which states that differentiation and integration are inverse processes.
This formalization is buih upon the library of constructive algel)ra created in the FTA (Fundamental
Theorem of Algebra) project, which is extended with results about the real numt)ers, llanlely about
(power) series.

Two important issues that arose in this fi)rmalization and which will be discussed in this paper arc
partial functions (different ways of dealing with this coneel)t and the advantages of each different
approach) and the high level tactics that were deveh)ped in parallel with the formalization (which
automate several routine procedures involving results about real-valued functions).

1 Introduction

In this paper we show how a significant part of real analysis can be formalized in Coq. We deal with differ-

entiation and integration, proving the Fundamental Theorem of Calculus (which states that differentiation

and integration are in some sense inverse processes) and Taylor's Theorem (which allows us to express a

fimction in t.erms of its derivatives while giving an estimate for the error), as well as defining some standard

constructions such as fimction defnition by power series and as an indefinite integral.

In parallel with the development of the theory some automation tools (tactics) were built with two aims:

allowing a signifi(:ant part of the proofs to be clone automatically and enabling the proof assistant to perform

the kind of computation that the average person working in this field can do. With these tools, Coq can

prove a large number of results involving derivatives and calculate the derivative of functions in a wide class.

looking also at the context where this computation is being done. We hope to extend the system in a near

fimlre to be able to solve the problem of integrating rational fimctions, providing t)oth an answer and a
proof that this answer is correct.

Tim hasis for this work was chapter 2 of Bishop's book on constructive analysis ([3]). The formalization

was built upon the algebraic hierarchy developed at the University of Nijmegen, described in [7] and available
in the Coq library, which included most of the results about real numbers that were needed, namely most

of sections 1 to 3 of [3] (where real numbers are defined and their main properties are proved); new results
about series were formalized, and sections 4 (dealing with continuity, sequences and series of functions), 5

(differential calculus and Taylor's theorem) and 6 (integration and the Fundamental Theorem of Calculus)

were completely formalized. Work is in progress regarding section 7 (which is concerned with exponential

and trigonometric functions and their inverses).

Our work centered on formalizing the definitions of basic notions in differential and integral calculus.

including notions of:

- continuous function;

- derivative;

- differentiable function;

- RiemaIm integral;

(convergent) sequence or series of functions;

Taylor sum and Taylor series of a flmction.

* This author was supported by the Portuguese Fundaqfio pare a Cibneia e Teenologia, under grant SFRH / BD /
4926 / 2001.
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Using these definitions, many theorems in this area were formally proved inside Coq; tim most important

alnon_ these were:

- the prese.rvation of continuity through algebraic operations on fllnctions;

- the uniqueness anti COlltiuuity of the derivative function;

- tit(, derivation rules for algebraic operations on flmctions and the chain rule for compositioll:

- Rolle's Theorem and tilt' Mean Law;

- integrability of any continuous funt'tion;

- the Fundamental Theorem of Calculus;

- preservation of limits and derivatives through limit operations:

- convergence criteria for series of flmctions (the ratio test and tim comparison test);

- Taylor's theorem.

I21 section 2 w(, briefly d(,scribr some characteristics of lhis formalization, inchMing the conse(luences (if

working witil Coq and of working constructively.

Tit(' basic notion whMl had t. be defined and studied at the beginning of the work was the notion of

partial function, as most of the common functkms of analysis are partial (h)r example, the logarithm anti

tangent functions). In section 3 w(, present the different at)preaches ttlat were studied and why we chose the

one we did.

Section 4 describes how proc_,dures were built that deal with a large class of tile most common goals

which show up in tile area of differential calculus. At the end, we will briefly compare this formalization with

similar work already done in other proof systems.

2 Formalizing Mathematics in Coq

Before we go into the specific details of our work. we will briefly discuss some specific Coq issues that influence

the way in which our formalization is done.

Coq is a proof tool based on a type system witil inductive types called the Caicuhls of Inductive Construc-

tions (CIC). Through the Curry-Howard isomorpifism, proofs are identified with terms and proof-checking

with type ehe('king; tilt, construction of a proof then becomes simply the intera(:tive ('onstruction of a term

which is at the end type-checked.

hi the CIC there are two main universes for terms: Set and Prop. Set is meant to be the type for sets

and other structures we want to reason about; Prop is the type of propositions. There is also an infinite

family {Type(i) : i E IN'} such that both Set and Prop have type Type(0) and Type(i) : Type(i + 1),

but types in tids family will be ilrelevant in this paper.

The logic associate(i witil the CIC through the Curry-Howard isomorphism is intuitionistic; this means

that to formalize n_athemati(:s w_, must either add the axiom of doubh _ negation (in order to tie able to work

classically) or work constructively. We chose the second alternative, and deeided to wt)rk following Bishop's

approach (see, [3]). From our point of view, this is the most general way to work: constructive mathematics

results being valid classically, we can always switch to classical reasoning if we want and we will still be able

to use all the results we have proved so far _.

The main cilaracteristic of constructive reasoning is the absence of proofs t)y contradiction. All preen have

computational content, tilat is, they provide algorithms to effectively extract witnesses of their statements.

So, for example, a proof of an existentially quantified statement 3.r : A.Px will ainount to an algorithm that

presents an elenlent t of tYl)e .4 such that Pt holds.

One of the irnnmdiate consequences of this is that some weak form of the Axiom of Choice sh()uhl be also

available for use; that is, if _l_e only way we can prove a statem('nt like _x :,4.P.r is by giving an element

satisfying P, then it is also natmal to have an operator that allows us to extract such an element from every

t)roof of such a statement.

Unfortunately, Coq does not allow us to define an operator of tills kin(t with tyt)e Prop _ Set for two

different reasons. At a mathematical level, consistency of the system requires such an otlerator not to tie

allowed to exist (see [4], pp. 81-83). On the other hand, Coq comes with a program extrat:tion mechalfiSm

An approach following the first alternative was indei)endently chosen [iv Micaela Mayero. see [I 11.
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(briefly des(Tibed in Chapter 17 of [4]) which allows progrmns to be derived fl'om informative proofs: fi)r

efficiency reasons, I his m(,chanism assumes that proof objects (living in Prop) are irrel_,vant, as they contain

no ('omputati_)nal interest. The existence of this operator wouhl undermine this assmnption.

Another t)rol)lem is equality. In type theoretical systems, the natural equality to use is Leibniz equality

(given x,y :A. :r = y iff VP : A -+ Prop.Px _ Py); however, this turns out to be too strong a eonc(,l)t

for most purposes. Therefore, we have to define ourselves a structure with our own equality. This is done
through the a()tion of s_toid: a seloid is a pair (S, =.s') where =._ is an equivalence relation on S.

For the purpose of formalizing real analysis, e(tuality turns out actually not to be so basic a notion, as it

is un(teei(labl(, on the set of real numbers. However, given two real numbers it is always possible to tell when

th(,y are distinct (although if they are not distinct we may never know). This motivates us to use what are

called setoids with apaT"t,_ess: setoids where a second relation #,;, called strong apartness, is defined, with
the following |)roperties:

- irreflexivity: for all x : S, -,(x#_x);

- synmletry: for all x, y : S, if x#_qy then y#.s.x;

- co-transitivity: for all x, y, z : S, if x#sy then either x#sz or z#sy;
- compatibility with equality: for all x, y : S, x =s Y iff -_(x#sy).

The last property actually allows us to do away with equality altogether, although it is not usually done.

Functions and relations on setoids are usually required to reflect this apartness relation; that is. if f is

a (unary) timer|on frorn a setoid S1 to a setoid oc2, then the following property holds: for any two elements

X, y : S,,,

f(x)#s_f(y) _ x#S,y •

This property is known as strong extensionality of f. Predicates in general might not be required to have

a similar property (and indeed in many interesting cases they do not), but sometimes the following weaker

condition, known as well definedness, is required: for all x, y : S,

x =,s' Y _ P(x)-+P(y) .

From now on, we will use the term "setoid" to mean "setoid with apartness" and denote the equality

and apartness relations in a setoid simply by = and # respectively whenever the carrier set is clear from the
context.

At this point we run into another problem of Coq. These definitions work out nicely, but it turns out

that if we want to use equality and apartness in a nice way the 3, cannot have type S-# S-+ Prop, as would
he normal for relations. For this reason, and our desire to use the weak form of the Axiom of Choice which

we already mentioned previously, we chose to use also Set as the universe for propositions and define our

logical connectives to work in this universe with the usual properties.

3 Partial Functions

In our work we only consider partial flmctions from one setoid to itself. The reason for this is that we are

mainly interested in working with real-valued real flmctions, which satisfy this condition; but generalizing

to arbitrary partial functions is quite straightforward and will be done in the near future.

3.1 How to Define Them

Throughout this section A will denote an arbitrary setoid.

The main characteristic of partial flmctions is that they need not be everywhere defined. Thus, it is

natural to associate with each partial function f : .4 7#.4 a predicate dora I : A _ Set.

In the algebraic hierarchy which we started from, we have a notion of subsetoid as being the subset of

elements of a setoid S satisfying some property P with the equality relation induced from S; formally, an

element of a subsetoid is a pair (x,p), where x is an element of S and p is a proof that Px holds. Using
this notion, it. seems natural to associate every partial flmction f with a total function on the subsetoid of

the elements of .4 which satisfy dora I. That is, the type of partial flmctions will be a dependent record type
looking like (in Coq notation):
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Record PartFunct :=

{dom : S->Set;

dom_wd : (pred_well def S dom);

fun : (CSetoid_fun (Build_SubCSetoid S dom) S)}

Here. dora is the dolnaiu of the function; the second item of the record Siml)]y stat(,s that this predicate is

well defined_; and the third item is a setoid fimction fronl the subsetoid of elements satisfying the predicate

to S.

Then fimctional application will be defined as follows: given a partial fimction f. an element .r :,4 and a

proof H : (dotal :1'), f(:r) is represemed by the lambda term

(fun f (x, H}) .

where tim extracts the subsetoid fimction fi'om the partial fimction record.

There are several problems with this definition. One of them is that proofs get mixed with the elenmms (in

the subsetoid construction), which does not seem very natural fi'om a mathenmtical point of view (where we

normally forget about the proof, as long as we know that it exists); another important one is that the terms

that we construct quickly get bigger and bigger, For instance, if we have two partial filnctions f,.q : A 74 A

and we want to compose them, the' rehwant predicate domuo f will look like

dom qo/ := Xr:A.(_Hf :(dom/ x).(dom9 (tim f (a', Hy)))) .

Assuming that fi)r some .r : A we know that H has type (domuo f .r), that is. H is a pair consisting of a

proof Hfof (dotal a') and a proof that (dora u (fun f (x, Hf})), then, denoting by _t and 7r, the left and right

projections, (g o f)(x) will reduce 1o

/fun .q <(fun f (:_,(_,H))), (_,, n)>) .

This last expression has sew_ral unpleasant characteristics, namely it is totally unreadable and very

unintuitive; the fact that we are simply applying 9 to the application of f to x is totally hidden among the

pairing and unpairing operations and the proof terms appearing in tlw expression. Also, if f and g happen

not to look at the proof at all (as is tim case if they are total flmc.tions), they still have to apply projections to

recover the argument from tile setoid element. This makes the simplification procedure very tiine consuming.

Thus, a different approach is needed, and we turn to a common alternative which has already been used

for example in the Automath system (see for example [2]). As before, we associate to every partial flmction

f the predicate dotal, but now we identify f with a flmction of two arguments: a setoid element and the

proof that it satisfies dora I. That is, our type of partial flmctions will now be:

Record PartFunct :=

{dom : S->Set;

dom_wd : (pred_well_def S dom);

fun : (x:S)(dom x)->S;

fun_strx : (x,y:S)(Hx:(dom x))(Hy:(dom y))

(((:fun x Hx) [#](fun y Hy))->(x[#]y))}.

In this definition, dora and dom wd are as before, but the last item of the record type (which was itself

a record) has been unfolded into two components: the function itself (as an element of a product type) and

the proof of strong extensionality of that flmction (which was previously hidden in the type of tile setoid

fimction). Given f, x and H as b_'fi)re, flmctional application now looks like

(tim f x H) ,

which differs from the previous representation in that we removed one flmctional application (the pairing

operation) and that the element x and the proof H are kept completely separated. This means ttmt. for

2 Although this is not required from the predicate in order t.o build the subsetoid, it turned out to be fundamental

for our work, namely to prove results about composition the chain rule for derivative, for example.
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ex;unple, if f is total then it can ])e conq)uted in a Inuch simpler way, because .r is directly available and no
(,xtra reduction is needed to get it.

Also comparing with the, previous example, the application of a fimctional composilion can bc written
mor(, nicely giv_,n f, g, :r and tI as

(fun g (fun f :r (_1 H)) (Tr,, H)) .

Notice that in many cases we won't even need to 1)erf()rm any comtmtation on (Trt H) and (Tr,. H), because
we won't need to look at the structure of these proofs.

3.2 Working with Function Domains

Once we have partial functions, natural operations with them inmmdiately suggest themselves. The most

obvious one (which we have already mentioned) is composition, but algebraic operations (defined point-wise)
are also iml)ortant, at least from the analytical t)oint of view. However, as soon as we try to define this it
turns out that it is useful to do some work .just with (tomains.

Since we have identified flmction domains with predicates, it turns out that what we need is simply a

mapt)ing between operations on subsets and operations on logical formulas; that is, given predicates P and Q
that characterize sul)sets X and }" of ,4 we want to define predicates that characterize the sets X N }'. X U 1",

A, q) and the prot)erty X C_t'. These can be simply taken to be Ax:A.(P x) A (Q x), Ax:A.(P x) v (Q x),

A:r : .4.T Ax :A.-I- and Ax :.4.(P x) --+ (Q x), respectively. These constructions preserve well definedness (that
is, if P and Q are well defined then so will all the predicates defined from them).

As we are concerned with real analysis it is also important to look at the specific kind of domains we

will fin(t. Constructively. it turns out that the most important one is the compact interval, which can t)e

characterized by two real mmlbers a and b and a proof that a _< b. The predicate corresponding to the
interval [a, b] is, of course, simply Ax :lR.a _< x A x _< b.

The reason for this domain to be so important is that all function properties (continuity, differentiability,

etc.) are always constructively defined for compact intervals. Bishop argues (see [3]) that point-wise definitions

make no sense in constructive mathematics for the reason that: equality is undecidable, and so the information
that a function f is continuous at some t)oint x is useless because most times we will not be able to know

whether we are exactly at x or not. However, if we work with compact intervals we will often be able to tell

that we are inside them (unless we happen to be exactly on the boundary), and so use that information.

Another important reason is that constructively it is not necessarily true that e.g. point-wise continuity in
a compact interval implies uniform continuity in that interval (a counterexample can be constructed with

some extra assumptions, see for example [1]), and so in practice it is more natural to begin with the uniform
concei)t altogether.

The other important kind of domain is the interval. In practice, it is difficult to find examples where we

really want to work in a domain which is not an interval or a union of two or three intervals, and the main

operations (differentiation, integration) and theorems (ttolle's theorem, Taylor's theorem, the Fundamental

Theorem of Calculus) always require that the fimction(s) im'olved be defined in an interval.

We model intervals as an inductive type with nine constructors, corresponding to the nine basic kinds of

intervals: the real line, the left infinite open or closed, the right infinite open or closed and the finite open or

closed on either side. To each kind of interval a constructor is associated: for example, finite, closed intervals
are identified with applications of a constructor c].cr :_ of type Ha, b : ]R.interval. To each of these the

obvious predicate is associated, and a property P defined for functions in a compact interval is generalized
by

P' := (£I:int,f : fun)(Va, b:lR)(((_ _< b) -_ ([a,b] C_I) --* (P [a,b] f)) .

This approach implies that we often have to state very similar lemmas for properties holding in compact

intervals and in arbitrary intervals. This is not felt as a disadvantage, however, and is in fact quite close to

Bishop's formulation, as most proofs of such properties require distinct reasonings for the compact and the
general case.

:_Closed Left Closed _Right
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4 Automation

We will now discuss what kinds of goals we would reasonably exp(,ct to be autonlatically proved and h()w

successful we have been so far m g(.tting the proof assistant to prove t]lenl |)y itself.

So far we have mainly deve[()pe.I a theory of differentiation, so one of the goals we wouht expect to pop

up very often and which should he automatically proved would he given ret)resentatioIls of two functions /

and g to t)rove the relation

.q is the derivative of f. (1)

W(, must also k('(,p in mind th;,t we at(' doing constru('tiv(, lnathemati('s, wh(,re ('ontinuity plays a key

role: intuitively, one can argue lhat all functions that we can deIhm construt:tivelv are ('ontimu)us. but no one

reasonably exl)ects this over t() be prove(I (see [3]); therefore, to make proofs easier, it is typically assumr(l

in the statement c)I' every lennna that all the functions im,olved are ('ontimu)us. This mr;ms that w(, exp(,ct

[O ('onl(, (tuitc oftell a('ross _ok|ls SilCh as

f is contimlous. (2)

Finally, the third goal (:crees as a tyt)ical side condition of the lemmas we must apply to prove any

statement of the previous two kin(Is: given a set X and a function f, prove that

X C dom(.f). (3)

In order to get a t)etter underslanding of why goals of type 3 show up so often, we have to look at how we

define equality of two functions. This concept is parameterized by domains, that is, for every two functions

/ and g and subset X of IR. we say that f and g coincide on X (f =x g) iff they are both defined in X and

they coincide on every point of X. that is, for any element .r : X att(t all 5" appropriate proof t ernts Hx and

t-/',

V_:.\VfI=.H- f(x, H:_) = 9(x, H.'_). (4)

Two comments are due on this definition:

- The inclusion of X in tlw domains of both f and 9 is essential if we want to get something that looks

like an equality, namely a transitive relation. If we did not require this condition then every function

would be equal in every set t() th(, undefined function, and no substitution properties 4 would hold.

- The reason why we ext)licitly state that / and g are defined in X is to make t)roof (levelopnmnt easier.

This way, we are left with three independent goals to prove: the two inclusions and (4), which we can

prove independently.

If we (lid not state tim in(:lusion explicitly, then we would only have to prove

V_:x3H_._r /(x, n_) = .q(.r, H'_) ,

which differs frorn the third _me in that the proof terms are existentially quantified. However, the exis-

tential quantifi(,rs make _his goal nmch more difficult to t)row_ and less suited to automation, which is

why we chose the first approach.

We begin by considering goals like (3). Typically, they are proved by looking at the algebraic structure

of f and the knowledge that inclusion is preserved through algebraic oI)erations, that is, if X C_ doTn(fi)

and X C dora(f:_,) then X C_ dom(fl + f.,_) and siinilarly for other operations. There are some side conditions

that have to be verified when division shows Ul), but these to() are usually laken ('are of by one of a small

groul) of lemmas.

When f has no algebraic structure, there is also a small nurnber of results we (:an use. namely the facts

that constant and identity functi,)ns are defined everywhere and that any fimction which is continuous in X,

has a derivative in X or is the derivative in X of some flmction is also (tefined in X.

With this knowledge, wr can (and we have) easily implement a tactic with the Coq Hints nlechalfisnl

which simply looks at tim f()rm _)f the goal and chooses the righ! lemma to apply from a not me big list.

This turns out to he satisfactory enough fi)r small to mediuin sized goals, although it doesn't always work

4 Like if f =x g and f is continuous in X then so is g.
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when the structure of f is too complicated. In those situations, typically the user has t.o break down f in

smaller parts 1)3 himself, and then invoke the automatic In'Over.

Goals lik(, (2) work in quite a similar way, and have been treated in the same way.

When w(' turn to goals like (1), however, things turn out to be quite different. From a naive perspective.

we wouhl expect this situation 1o be similar to the previous ones, as we intuitively reason in this situation

by cases using a small set of h_nunas the derivation rules. However, when we analyze the situation more

carefldly it is not as simple as it looks, as we show with a small example. Let f and 9 1)e functions everywhere

defined by the rules f(ar) = 3:r + 4 and 9(a:) = 3, respectively. If we want to prove f' = 9, then we would

like to begin by applying the derixmtion rule for the sutn; however, in order to do this we also need to have

a flmction that is the sum of two other flmctions on the right side, and this is not the case. Hen<'e we are
stuck.

The trick to to this is, obviously, t.o replace g by what we get if we differentiate f by using the differen-

tiation rules in this case. t)3, h such that h(.r) = 3 * 1 + 0. Then we can easily prove that f' = h and we are

left with the goal 9 = b, which is also easy to prove. The ln'ot)lem, then. amounts to finding 1_.

Intuitively. we would like to make some kind of recursive definition that looks at the algebraic structure

of f. However. there is no inductive structure in the class of partial flmctions, so this is not directly possibh,.

However, the Coq tactic language allows us to do something similar: we meta-define (that is, we define in

the recta-language) an ot)erator that looks at the structure of f and correspondingly builds h. This operator

recognizes algebraic operations, functional composition and (:an look at tim context for relevant information

(for instance, if there is a hypothesis stating that for some functions fl anti f2 the relation f_ = f2 then it
will use f2 as a derivative for fl); however, the proof is still left to be done by the user.

Another, and more powerful, approach is to use reflection (a nmthod which is described in flfll detail

ill [8]). l,¥e select among the class of all partial flmctions those whose derivative we know how to compute,
and model this as an inductive type P.7". This type will have not only constructors for constant and identity

flmctions and algebraic operations on these, but also two special constructors that allow us to add any

flmetion about which we know something fl'om the context. This will allow us. for instance, to prove that

(2f)' = 2g if we know fi'om the context that f' = g.

On T_)r- we will define two operations: a canonical translation map _._ : T'b r --+ (Kt 76 Ill) to the real-vahled

partial time(ions and a symbolic differentiation operator ' : T'.T --+ 7).7" with the property (stated as a lemma)
that fur every ,s. : T'.T

[.s"_ is the derivative of [s_. (5)

Our problem now amounts to the following: given a flmction f, how do we determine an element s : Pb r

such that _s] = f? That is. how can we define a (partial) inverse to _'._? Again, this is done at the tactic: level
in Coq: we recta-define an operator by case analysis that k)oks at the structure of f and breaks it down;

whenever it finds an algebraic operator, constant or identity function, it replaces this by the corresponding

constructor in T_T; whenever it finds a function that it knows nothing about (that is, an expresskm like

"f") it tries to find an hypotimsis in the context that allows it to use one of the two special constructors.

If everything goes well, we get indeed an element .s with the required property; otherwise we get an error

message.

With these tools we can then write down our tactic as follows: given f and g,

1. Find s : P.7" such that [s_ = f;
2. Compute s';

3. Replace f by l[s];

4. tteplace .q by _s'];
5. Prove that [s] = f;

6. Prove that _s'} = 9;

7. Apply lemma (5) to prove that [[s'] is the derivative of Is].

Steps 3 and 5 may seem superfluous, as s was constructed so that ][s] = f would hold. The problem,

however, is that we did not define this construction as an elenmnt of type (I1R76 IR) --+ P5 c (because no such

element with thc_ required properties exists), so we cannot prove anything in general about this operation.

Still, step 5 turns out to be trivial, as simplification on [[s] yields f and we just have to invoke reflexivity of

equality.
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St(,p 6 is the tri('ky one. In the most cases, this will reduce to proving sonte inclusions of domains (which

we have already autolnated) and _hen e(tuality of two algebraic exl)ressions (which the Rational tacti(:,

described in [8], can normally deal with); in some cases, however, this step leaves sonle work to be (tone,

for exmnt)le if the equality between [,_'_ and g relies on the fact that any two (terivatives of a given flmetion

must coincide. Even in this cases, however, exl)erience has shown that the goal has beell nnlch simplified, st)

that we do profit from this tactic.

At the present moment. _he biggest limitation of this tat:tie is that it cannot deal with division or

flmctional COml)osition. However, exl)('rien(:e shows it to be nm('h more effi('i(,nt (both regarding comtmtat ion

tim(, and the size of the constructed proof-terms) than the first appr()ach. Also the limitations tm'n out not

such a big probh,m as they c(mht s,,em, a(:tually, because we can always add the relevant stet)s as hyi)othesis

to the context and l)rove ttwm later; I)ut they still are limitations, and it is interesting to see why we can't

deal with these cases in th(, same way as we dealt with the others.

When we look at the ('<mstr(tctiv(, rule for derivation of a division or composition of two ftln('tions, tit('3"

turn out to differ front the ()ther rules in that they have some side ('onditions that have to be met: as an

example, to af)ply the rule fl)r division, we have to l)rove that the absolute value of the denonfinator of the

fla('tion we want to (lerlve is always greater than some positive constant. In order to prove that this side

conditions always hold (wtfich we have to do if we want to prove something like V.,,_s'] = [s_'). we have to add

in the constructor of T',T corresponding to division an argument stating something about the interpretation

of one of the other arguments. But this is not possible in Co(t, because we cannot simultaneously define an

inductive type and a recursive fun('tion over that type (although type theory allows us to do this, namely in

this situation).

The case of composition is ev_,n w()rse, as one of the goals we get says something about one flmction

being the derivative of another in an unknown interval. One way to solve this t)roblem would be to make

our tactic interactive in sorne way. but there is no obvious way to (1() this.

Presently, as we said, these limitations turn out not to be such a big deal. Division is not such an

important operation when we work constructively, as most situations that use division can be rewritten so

as to use only multipli(:ation; and for composition we can usually achieve our goals by adding hypothesis to

the context and at)plying the chain rule by hand. When none of this works, we can still rewrite the fimetion

on the right-hand side of the goal with the first operator we define and pro(:eed by hand.

5 Related Work

This same fragment of real analysis has already been fi)rmalized in some systems t)y (tifferent people. We

will now briefly describe these formalizations and how they differ from ours.

M icaela Mayero (see [11]) has formalized differential calculus in Coq, including notions of (point-wise)

contimfity and differentiability, derivation rules, and some work on transcendental functions. However, she

does not treat integral calculus or more general theorems like Rolle's theorem. This is because her motivation

is not formalizing real analysis in itself, but showing how such a formalization can be used for other purposes,

whence she develops just the theory that she needs for her examples. For the same reason, she argues that

it makes more sense for her to work classically--which makes her work totally distinct from ours.

Mayero's treatment of partial flmctions also differs fi'om ours. As we do, she always associates a domain

with every flmction; however, ttwy are kept completely separated: functions have type IR -+ IR, domains

IR -+ Prop, and the domain is always explicitly stated in the formulation of the lenunas. Although this

makes it possible to write things (town in a way closer to usual nmthematieal notation (that is, f(x) instea(t

of f(x, H) or something similar) it. does have the disadvantage that you can write down things like l_

although it is not clear what the 5" mean.

In the PVS system, Bruno Dutertre (in [5]) has also developed a classical theory of real analysis, incht(ling

the main definitions in differential calculus. Building upon this work. Hanne Gottliebsen built a library

of transcendental flmctions described in [9], where she defnes exponential, logarithmic and trigonometri(:

flmctions, t)roving similar res,flts to ours. She then defines an automatic procedure to t)rove continuity of a

large (:lass of fimctions, which wc_rks in a similar way to ours, and shows how it can t)e used interactively

with Comtmter Algebra systems _(_ guarantee the correctness of aI)t)lit:ations of the Fundanwntal Theorem

of Calculus.
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,JohnHarrison'sH()L-lightsyswm(describedin [10])isanotherproofassistantthatconmswitha library
of realanalysis:onceagain,thereasoningin thissystemis classical.Theresultsincludedin this library
includetheusualresultsonpreservationofcontinuitythroughalgebraicoperations,derivationrules.Rolle's
theoremandtheMeanLaw.

Alsoincludedin thesystemisa libraryoftranscendentalflmctions,whereexponentialandtrigonometric
time(ionsaredefinedaspowerseriesandtheirinversesasinversefunctions.Finally.integrationis defined
andtht,FundamentalTheoremof Calculusisproved.

6 Conclusions and Future Work

W(, have shown how to formalize an important fragment of constructive real analysis and how to use this

formalization to buiht autonlation tools that can (partly} solve some problems in this area, by providing

not only an answer trot also a proof that this answer is correct. Presently we deal only with differentiation

in a restricted (:lass of functions, but work is being done to generalize the seqting to all the elementary

transcendental flmctions. We holm to complete this work with sinfilar results regarding integration, nalnely

by providing a way to integrate rational functions and prow', the result correct.

In doing so, we haw, also shown that it is possibly to build and use modular libraries of mathematical

formalizations, as our work was done using a library of real numbers which was already developed and to

which no changes were made (although some results had to be added dealing with specific problems). We

have also provided evidence to Bishop's claim that it is indeed possible to do useflfl mathematics without

the double negation rule.
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Abstract. DOVE is a lsabelle-based, graphical tool for the trusted design and analysis of state machine

designs. \Vork is currently uuderwe_v aimed at increasing the scope of DOVE to include complex,

dynamic and real-time processes. This paper describes a refinement approach to the design and analysis

of complex processes, including a formal development of the approach in Isabelle. It is argued that the

addition of a network feedback operator and associated refinement rules makes the refinement calculus

of Back a powerful development tool for process networks, allowing essentially arbitrary decomposition

of network properties over suhcomponents. The feedback operator is shown to be "compositional' with

respect to an implementation language of digital input/output processes with local state. Some simple

examples are considered.

1 Introduction

The effective and economical development of complex, dynamic and real-time systems is a nlatter of con-

siderable interest to the Australian Defence engineering conmmnity and to the engineering comnmnity in

general. This is especially so where the systems under development serve critical functions and require the

highest levels of trust and assurance when fielded into service. Many existing regulatory authorities demand

the highest levels of mathematical rigor in the analysis of security-critical and safety-critical systems, levels

of rigor which present a considerable challenge t.o the current state-of-the-art in the mathematical analysis

of complex systems. The DOVE design and analysis environment aims to offer developers a powerful and

usable tool for supporting the development and presentation of assurance cases for critical systems.

The current version of the DOVE tool [7] comprises a sophisticated state-machine reasoning tool devel-

oped in the Isabelle/HOL environment [25] and a graphical user environment which supports and encourages

a highly visual approach to the design and analysis of state-machine based systems. Although the use of a

general theorem proving approach to treating the properties of state-machines allows the treatment, of larger

state-spaces than the competing technology, of model-checking, the state-machine formalism still does not

scale well to large systems with complex interacting components. Nor does it allow, or even offer the prospect

of, the treatment of real-time or physical process components. The effective treament of such components

requires the adoption of an analog process model, or at least the inclusion of analog aspects in a discrete

model such as adopted in so-called hybrid-systems approaches.

A common approach to the problem of composing interacting systems is the dataflow network. It enjoys

widespread recognition and has been adopted in many existing informal development approaches. Dataflow

networks also admit a natural and highly intuitive visual representation as directed graphs in which the

nodes represent system components and the edges represent, informational or even physical flows. Finally,

datafiow networks readily allow the treatment of analog components, it. is only necessary to make use of

continuous functions to model some or all of the dataflows involved.

The work presented in this paper considers the use of dataflow networks to provide a formal basis for the

design and tractable analysis of networks of interacting processes, both digital and analog.

1.1 Compositional development

The separation of formal specifications into assumptions about the environment of a process and commit-

nmnts made by the process has a venerable formal methods pedigree [11], stretching back through Hoare's
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axioms [10] to the germination of the idea. in work by Floyd [9] and even Turing [29]. By supporting the

meaningful specification of open systems, the assumption/commitment approach has become the cornerstone

of many compositional approaches to treating complex systelns.

The adoption of what we term the assumption/commitment paradigm in the development of process

networks may be traced to Misra and Chandy [20], who used assumption/comn_itlnent specifications on

system traces to develop a compositional method for the verification of safety properties in networks of

CSP-like processes. Subsequently, many other authors have used similar approaches to develop methods

for the verification of various subclasses of process properties. Some such approaches are due to Pandya

and Joseph [26]: Abadi and Lamport [1]; Stolen, Dederichs, and Weber [27]; and Stolen [28]. In every case
however, the methods offer complex verification conditions and (with the exception of that of Stolen) allow

the treatment of at best a restricted class of process properties. Furt.hermore, they rely for their effectiveness

on specialised (and somewhat baroque) process models with narrow areas of application. The primary reason

for such complexity and restrictions lies in the difficult 3"of defining a general, compositional model of net.work
construction.

One difficulty in modeling network construction has been the common approach of defining a parallel

hookup operator which 'includes both parallelism and feedback capabilities. The complexity of such all-

purpose operators tends to overwhelm the search for tractable approaches to reasoning. As observed by

Katis et aI [12], it. is preferable (at least in the abstract) to define separate parallel and feedback hookup

operators. Another difficulty has come from the tendency to treat, feedback in terms of recursive function

theory. A more promising approach has been suggested by Katis et al [12]. They describe a relational feedback
operator based directly on a naive notion of fixed points. As demonstrated in the remainder of this paper,

making use of a separate feedback operator based directly on this naive notion of fixed points greatly improves

the tractability of reasoning about, networks of processes.

1.2 Refinement

A separate development of the assumption/commitment paradigm has seen the utilisation of predicate trans-

former semantics in support of compositional development methods for sequential programs. Weakest pre-

condition program semantics were first suggested _" Dijkstra [8] and have been blended successfully with

the assumption/commitment paradigm independently by Back [4], Morgan [21], Morris [23], and Nelson [24].

These formalisms have much in common and are referred to collectively as the refinement calculus.

The refinement calculus is a broad-spectrum, specification/programming language together with a col-

lection of refinement rules that support top-down design. High level specifications are refined to mixtures

of specification and program code and finally into pure program code. The pure code subset of the refine-

ment calculus is called the implementation language and will vary with the problem to which the refinement

calculus is being applied. For example, Morgan's program refinement calculus adopts Dijkstra's guarded

commands as its implementation language.

The refinement calculus approach has been used successfully in several case studies in the specification

and design of real-time and reactive processes [13, 15, 17, 18]. The purpose of this paper is to formally define

an extension of Back's predicate-transformer model so as to allow its use in the treatment of interacting

processes. By formally, in this case, we mean that the extension has been developed using a formal modelling

tool, namely Isabelle's HOL modelling environment [25].

Following Katis et al we describe a network construction model which allows processes to be hooked up

in sequence, parallel, and via feedback. The sequence operator is well known, being originally described by

Dijkstra. The parallel operator has been the subject of considerable interest in recent years, first defined by

Martin [19] and then investigated in detail by Back and Butler [5,6] and also Mahony [14]. The feedback

operator is partially a contribution of this paper, having been suggested by the relational operator of Katis et

al. Following the usual refinement calculus approach we define a collection of novel refinement laws involving

these operators that support the top-down development of process networks from abstract specifications to

concrete implementations.

The resulting refinement environment represents a powerful tool for the analysis of both liveness and

safety properties of dynamic proceses. Furthermore, it is a tool which does not depend for its effectiveness on

a particular model of computation. In particular, it is in principle possible to adopt either digital or analog



DOVE:ComplexDynamicProcesses I69

Fig.1.Exampleprocessnetwork.

processmodelsandevento mixthem.Thisrepresentsaclearadvanceill analyticalcompletenessovertlle
restrictiveclassesof propertiesandsystemstreatedby mostof themethodsdescribedaboveanda clear
advanceill tractabilityoverthemorecomplete,thoughstill model-specific,methodof Stolen[28].

1.3 Summaryof paper

Thebalanceof thepaperhasthefollowingoutline.In Section2thebasicsof predicatetransformeralgebra
areintroduced.In Section3thethreenetworkhookupoperatorsaredefinedandrefinementrulesintroduced.
In Section4animplementationlanguagefornetworksof IFO machines is introduced. This language is used

in Section 5 to present some examples in the use of the refinement calculus. Finally. the results of the paper
are summarised in Section 6 and the network refinement calculus compared to existing network verification
methods.

2 Predicate transformer basics

This section briefly introduces the basics of predicate transformer algebra, as presented by Back and von

Wright [3]. The formal text in this paper follows the syntax and conventions of the Isabelle/Isar implementa-

tion of HOL [251. In particular, proofs are presented in tile Isar style [30] of proof-programming. Briefly, the
proof justifications fall into three broad categories. The keywords rule, intro, and elim indicate the use of the-

orems as inference rules. The keyword simp indicates the unwinding of definitions. The keywords auto, fast

and blast indicate the use of automated proof procedures. In general, the full Isar proof script is presented,

but where the full proof is particularly tedious we elide it, offering instead a brief informal justification.

This paper aims to address the high-assurance design and analysis of complex processes. Processes are

viewed as hierarchical networks of process elements communicating along dedicated channels. Such processes

may be represented using annotated graphs such as that depicted in Fig. 1. Various forms of polygons are

used to represent classes of network elements and directed arcs are used to represent information flows
or process components. This ability to render process networks in a graphic form is an important tool for

communicating their component structure and will form the basis of a graphical user interface for interacting
with process hierarchies in a forthcomming version of the DOVE tool. We make judicious use of it throughout

this paper.

The properties of processes are expressed through predicates. The reader is assumed to be familar with

the algebraic properties of predicates, but briefly a predicate ¢::_z is a boolean-valued function of process

state Z'. The usual boolean operators are lifted to act on predicates, with the following operator precedents:

-_, A, V, _, _', 3. The standard boolean order is lifted pointwise to define the entailment order (_) on

predicates.

We identify" three basic models for describing processes/specifications that, given inputs from X, construct.

outputs from F.

The simplest model of process is as a logical function f::r --+ F from input states r to output states F.

Functions allow us t.o describe from each input precisely the desired output. Such detail is of course necessary

for an implementation, but is often tiresome in the early stages of design.
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An easieroptionis to specii)'a rangeof allowedresults.Thiscanbedoneusinga relation R::Z _ F,

which is a function from input states Z and output states F to the booleans. The natural lifting of the
boolean order to relations yields the entailment order on relations (also written _) which increases as more

choices are added to a relation. The range of choices allowed by a relation is known as the nondeterminism

exhibited by a relation. A relation S::X _ F, such that S e, R, may be thought of as an implementation of
R.

In the abstract, relational entaihnent offers a simple, and theretbre attractive, model for treating the
design process, but in practice relational verifications tend to be hard to deal with and to invoh,e numerous

repetitive and complex calculations. In addition, it can be difficult, to treat incompleteness and inconsistency

in specifications in an entirely satisfactory manner. These problems can be overcome by adopting the pred-

icate transformer _ the basic process model. Predicate transformers were introduced by Dijkstra [8] as a
generalisation of relations.

A predicatc transformer p::r _ F is a function from predicates over output states _/, which we refer to

as effects, to predicates over input states _2, which we refer to as presumptions.

2.1 The refinement calculus

Predicate transformers offer a richer algebraic structure in which to model and analyse computational mech-

anisms, than do either functions or relations. Indeed Dijkstra seems to have found predicate transformers too

rich in structure and immediately began suggesting "healthiness criteria" intended to restrict attention to

those predicate transformers sufficiently relation-like in nature to be comprehended using his existing rela-

tional intuitions. As our understanding of the algebra of predicate transformers has grown, we have gradually
come to appreciate the power of such unintuitive features as magic, coercion, and angelic non-determinism,

however one healthiness criteria remains. We make use only of those predicate transformers which are mono-

tonic with respect to entailment, since these are rational in the sense that stronger presumptions are required

to achieve stronger effects.

In the tbllowing, we use the term process as a synonym for monotonic predicate transformer, since this

makes it easier to convey the intuitions behind the predicate transformer model.

defs monotonic_def : monotonic p _ _f¢ d/ . ¢ _ dJ _ p ¢ _ p ¢

Though we do not present the proofs, all of the operators presented in this paper construct monotonic
predicate transformers.

The pointwise lifting of the entailment ordering is called refinement (_ E -) and is read "is refined by".

defs refbyeq_def : p E q = V d)* p 0 _ q d)

The term refinement alludes to a view of top-down design as the process of removing the "impurities"

of incompleteness and nondeternfinism in a specification until all that is left is the "pure" code which was

originally intended. This view is supported perfectly by the refinement relation since every refinement of

a process is able to achieve all of its effects under the same or weaker presumptions. Thus from a process

design standpoint, it is always acceptable to replace a process with a more refined process.
Much of process design can be viewed in terms of finding solutions to problems in process refinement

and the algebra of predicate transformers provides an ideal tool (we call it the refinement calculus) for

actually calculating solutions to design problems. This calculational facility often allows predicate transformer

based verification systems to be simpler than corresponding relational systems. In the refinement calculus,

verification laws tend to require fewer human-supplied parameters (many parameters can be replaced by
calculated most-general solutions) and fewer verification conditions (most-general solutions are solutions by

construction). In fact, these laws tend to be so much simpler that we call them refinement laws, so as to

focus attention on their use as design development tools rather than design checking tools.

The approach to network design taken in this paper involves the definition of a collection of pred-

icate-transformer operators that. allow the modeling of process designs and implementations, together with

refinement laws for introducing and eliminating these operators during design development.

Again, though the proofs are not presented, all of the operators presented in this paper are monotonic

with respect to the refinement relation. This property is called vertical compositionality by Zwiers et al [31].
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Fig. 2. Predicate transformer embeddings.

Compositionality is critical to the utility of the entire refinement approach, since it allows network designs

to be decomposed in such a way that the subcomponents may be developed in isolation, possibly by separate

design teams.

A second aspect of compositionality noted by Zwiers et al is horizontal compositionality. This requires

an operator to preserve implementations in the sense that when its arguments are implementations its result

is also an implementation. We call such operators code-preserving. It is important to realise that, in the

context of the refinement calculus, horizontal compositionality is a function of the implementation language.

All refinement calculus operators must. be monotonic, but only program operators need be code-preserving.

Following Morgan [22] we express refinement laws in a vertical style which emphasises the transformation

aspects of the refinement process. In the vertical style, the specification is presented above a design, separated

by a horizontal rule and with any side-conditions to application of the law placed to the right, of the rule.

For example, we write
P

G
q

for the proposition G _ p c q.

2.2 Predicate transformer embeddings

Predicates may be embedded as predicate transformers in two ways, either as an assertion about the process

state or as a coercion of the process state. Assertions and coercions can be represented as lollipol>-style nodes

on a network graph, as depicted in Fig. 2(a) and 2(b).

defs

assert_def: {A} -_ A¢ • A A ¢

coerce_def: [A] _ ,t¢ • A _ ¢

Assertions are refined by weakening their predicate and coercions by strengthening it.

{01
lemma assert}V: ¢ _ g,

lO}
by lsimp add: pand_def)
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[¢1
lemma coerceS: -- ¢ _ ¢

[¢1
by (drop add: pimp_clef)

Simple functions become point-replacenlent operators when embedded as predicate transformers. They

are represented on network graphs as diamond shaped nodes, see Fig. 2(c).

defs function_def: (f) _- ,1¢ a. ¢ (f a)

Relations may be embedded as predicate transformers to give abstract specifications of desired relations

t)et_en inputs and outputs. Following Morgan [21], we introduce the specification statement as the pri-

mary method of expressing relational specifications. In addition to a relation between inputs and outputs

(the cornrrtibz_ent), the specification statement also includes an assttlnption about the properties of inpnts.

Specification statements are represented graphically by rectangular nodes, partitioned into assumption and

commitment compartments, as shown in Fig. 2(d).

defs spec_def: [ A / El _ A¢ a • A a A (V b. E a b _ ¢ b)

The main refinement laws dealing with specification statements allow the utilisation of the assumption

when strengthening the conlmitnmnt and the weakening of the assumption.

[A/EI]
lemma commitS: (.ta b, A a A E: a b) _ E_

[A/E,.]

by (auto)

IA1 �El
lemma assume_'V: A, _ A2

[A2/E]

by (simp)

A deterministic specification is refined by the corresponding function.

[A/Aa b,b= fa]
lemma fun/:

by (simp)

3 Network constructors

We support three methods for hooking up the inputs and outputs of processes, as shown in Fig. 3. The

first method is sequential hookup, which is modeled by function composition. The second is parallel hookup,

which is modeled by the predicate transformer product operator. The third is feedback hookup, which is

essentially coerces one of a process's outputs to have the same value as one of its inputs.

3.1 Sequential hookup

Composing processes sequentially is a simple matter of passing the outputs of one to the inputs of the second.

In the functional model this is achieved through function composition, in the relational through relational

join, and in the predicate transformer through reverse function composition. Sequential hookup is monotonic,

associative, and its identity hookup is the identity function 1.

defs

fseq_def: f >> g -_ ,ta • g' (f a)

rseq_def: R >> S _ ,ta b.(3c.R a c A S c b)

seq_def: p >> q _- ,tO* p (q ¢)
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(a) sequence

(b) parallel (c) feedback

Fig. 3. Hookup mechanisms.

The technique for sequential decomposition of a specification, is to first express the commitment as a

sequential composition.

[A/E >> F]
lemma midI:

[A/ E] >> [At)*3a.A a A E a b/ F]

by (auto)

We also require rules for introducing coercions and for transferring information from coercions to speci-

fications.

P
lemma coerceI:

[¢] >> p

by (simp add: pimp_def)

[¢] >> [A/E]
lemma assumeS:

[¢1 >> [0 /x A/E]

by (simp add: pimpMefpand_def)

3.2 Parallel hookup

Hooking up two processes in parallel creates a single process which accepts pairs of inputs and produces

pairs of outputs. This is straightforwardly modeled in the function model of computation by the function

product operator.

defs fprod_def: fl x f, _- A(az, _2) • (fJ al, f2 a_,)

It is equally straightforward ro define product operators for predicates and relations. However, lifting the

notion to predicate transformers proved more difficult and a number of approaches [14] were proposed before

agreement was found. The basic idea of this predicate-transformer product is quite straightforward, that is to

map effect predicates over a product space to presumption predicates by mapping the individual components

separately. Thus, the process Pl x p_ maps Ol x ¢, to (PL _1) x (p, ¢__). Unfortunately, few predicates over

a product space are a product of predicates over the individual components. However this basic premise can

be used to define the predicate-transformer product using a technique similar to the "sum-of-the-rectangles"

approach to defining area in geometry. The image of ¢ under Pl x P2 is the union of the images of all the

"rectangles" contained in ¢.

defs product_def: Pl x P2 -_ A¢• V _1 02(_1 x ¢2 e, Co(p1 _l) x (P2 ¢2)
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Fig. 4. Introducing a feedback loop.

This definition was first proposed by Martin [19] and has been analysed in some detail by Back and

Butler [5, 6]. Another possible approach to defining a product is to make use of a relational decomposition

property [19] to lift the relational product operator [14]. It turns out that both approaches yield the same

operator.

The basic technique tbr introducing a parallel hookup is to decompose the assumptions and the commit-

ments according to the desired subcomponents.

[AxB/ExF]
lemma spec_prod:

([ A / E]) x ([ B / F])
by {auto simp add: pprod_def)

Since, as already" conceded, few predicates (or relations) are of rectangular form, this is a highly restrictive

approach to introducing products. However there are some points that can be made in favour of this situation.

Primarily, it nmst be noted that there should be no great imperative to decompose processes in parallel at

an early stage of design. In fact, in the general case, this is likely to be a highly ambitious aim. Consider what

such a decomposition implies about a design, namely that the subcomponents of a given process admit such

a strong decoupling of their behaviour that their further development m_ be done in complete isolation.

Seen in this light, it is clear that the introduction of products should not be forced, but rather that products

should be allowed to arise naturally from the design process as the elements of the design become more

concrete and determined. Indeed, some process components m%, exhibit such strong coupling of behaviour

that it never becomes convenient to explicitly separate them.

An artificial imperative to perform such decompositions has been introduced into a number of existing
approaches due to the coupling of the product and the feedback operators. In order to make use of the

properties of a feedback loop in a design it is thus necessa W to "discover" a suitable decomposition of the

process components. This forms a major barrier to the use of such methods and is a strong argument in
favour of a decoupled approach to modeling parallel processes.

3.3 Feedback hookup

The third method of hooking up the inputs and outputs of processes is through the introduction of feedback.

The essence of feedback, as it is for iteration and recursion, is the construction of a fixed point. To see this,

consider the simple (abstract) network element depicted in Fig. 4. The effect of introducing a feedback loop

(depicted as a dashed line) from the output y to the input x is to equate their two values, necessitating the

discovery of a fixed point of the process when viewed as an input/output transformer. The only difference

is that in the cases of iteration and recursion the desired fixed point is a program while in the feedback

case the desired fixed point, is some user-defined data structure. This of course has profound implications

for modeling feedback since it cannot be treated straightforwardly through the existing, complex models for
treating iteration and recursion. Perhaps the very focus on highly-developed fixed-point theories for treating

iteration and recursion has been something of a distraction in the treatment of feedback (we discuss other

approaches in Sect. 6). In fact, as was pointed out clearly by Katis et al [12], the situation with feedback is

actually much simpler. The introduction of a feedback loop may be viewed quite simply as the strengthening

of an existing specification to require that an output have the same value as a given input. It is this model
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Fig. 5. Definition of feedback.

of feedback which we adopt, embodying it in the predicate transformer model by (as depicted in Fig. 5)

introducing the appropriate coercion and hiding the feedback variable so as to protect it fi'om outside effects.

defs feedback_def :

!p._ ¢ a _ (Vx * (p>> [(_t x' • x'= x) x true 1) (true x ¢) (x, a))

Since a thedback loop introduces a hidden coercion, it is important to have a clear intuition as to the

potential effects this may have. The first and most obvious danger is that. the component process may have

no fixed points, making the feedback process inconsistent, and therefore unimplementable. A more subtle

danger is that the component process may have many fixed points, even if it is itself deterministic. Thus a

feedback process may be nondeterministic even if its component process is deterministic.

Introducing a feedback loop is simply a matter of expanding the input/output spaces of a specification

to accommodate the feedback component.

[A/E]
lemma spec_fl)I:

.[[,t(x, a) eA a / ,t(x, b) (x', b')e E b b'] ]
by (strop)

After applying spec_fbI, the designer is free to use other refinement laws to introduce the desired prop-

erties of the feedback component. The important question in this is how the designer should go about.

introducing assumptions about, the behaviour of the feedback component. Our suggested approach harks

back to Morgan's [21] original arguments in favour of the positive applications of miracles. We propose that

the designer introduce the desired properties as coercions of the feedback component on the input side so

as to allow them to be used as assumptions in subsequent development. Such refinements would conform to

the following general outline.

have

[A/El

! [,t(x::a, a)eA a / A(x::a, b) (x', b')eE b b'] !

by (rule spec_fbI [rule_format])
also have ...

[--

[.[F] >> ([,t(x::a, a)eA a/,_(x::a, b) (x', b')eE b b'])_]

by (intro monotonic_operators, rule coerceI)

also have ...

c

[[F] >> [F A (,t(x::a, a)eA a)/2(x::a, b) (x', b3eE b b']?

by (rule monotonic_operators, rule assumeS)

This style of development turns out to be a safe application of miracles because the fixed point, properties

of the feedback components mean that these coercions can eventually be eliminated using the following
refinement rule.

[ [El >>(,3 .J
lemma rga_coerceE: V x a, fst (f (x, a)) = x _ E (x, a)

;(t?]
by (auto)
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Thus,once the dataflow element has been refilled to an implementation (flmction), any coercions o21 the

feedback components as inputs that have been used to aid that development can be eliminated, provided

they are in fact established on the feedback components as outputs.

4 Input/output machines with feedback

The astute reader will have noted (perhaps with some annoyance) that we have not yet mentioned any

concrete model of process behaviour which would legitimately allow us to consider the above formalism a

refinement calculus for process networks. The paper has been so presented in order to stress the fact that

all of the refinement calculus meehanisnls of network composition are independent of the concrete process

model to be adopted. Thus we are free to fit the refinement calculus approach onto virtually an5" (state-hased)

process model which supports any or all of the sequential, parallel and feedback forms of hookup.

Of course, in order to present any interesting examples in the use of the refinement calculus, it. is necessary

to choose a particular concrete process behaviour model. The first decision in choosing a model is determining

how best to represent, observations of the system components and an important part of this is deciding on an

appropriate model for time. In the large informal case studies we have done in network refinement we have

generally been concerned with physical flows such as water levels and line voltages [13, 15, 17, 18] and have

made use of the real numbers to model time. Unfortunately real-analysis support in Isabelle is not really

mature enough to be used for giving the sort of simple examples in refinement that we wish to present here.

Instead we model system observables using the natural numbers as our model of time.
Another important decision concerning such a model is the selection of a class of specifications which

may be considered terminal points of the design process, that is to say the process implementations. In the

program refinement calculus the assignment statements (deterministic, total specifications) are used as the

basis of the implementation language, the general class of implementations then being the closure of the

assignments under the various program operators. The introduction of the feedback operator complicates

this approach by having the potential to introduce non-determinism and even magic, even when applied to

deterministic processes. We nmst be careful how feedback is used in the implementation language if we are

to ensure the functionality of all implementations. Of course, a comparable problem also exists in the case

of the while operator, the difference being that a while statement, may introduce incompleteness rather than

nondet.erminisnl or inconsistency. Our approach to treating this problem is to construct an implementation

language in such a way as to ensure that feedback loops do not introduce nondeternfinism or inconsistency.

An alternative approach might have been to follow the lead of the while-loop and introduce notions of

partial-correctness (all fixed points are refinements) and total-correctness (there is exactly one fixed-point).
The rest of this section is devoted to presenting a simple model of multi-threaded computation based

on digital traces and an implementation language which we call IFO machines, input/output machines with
feedback.

4.1 Traces

Temporal observations of I/O machines are modeled by traces. The simple traces are functions from the

natural numbers to instantaneous observations of the inputs or outputs of the I/O machine. We write X* for
the simple traces over Z. More complex traces are built up as tuples of simple traces. We find it convenient

to adopt a subscript notation for indexing of trace elements, for example writing tn for the n"_ element of
the trace t.

Complex traces are composed/decomposed using the tzip/tunzip functions.

defs

tzip_def: tzip _- ,it • (,In- ((fst t)n, (snd t)n))

tunzip_def: tunzip _ ,it • (,in • fst tn, `in • snd t,)

Values may be attached to the front of simple traces.
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defs tcons_def: a#t & ,tneif n = 0 then a else t, _ 1 fi

An indexed collection of predicates/relations can be lifted to a trace predicate/relation by conjoining

their pointwise applications.

defs dpprod_def: 17 q5 _ ,lt • V n * _P. t.

In theory, the distributed product, operator offers the power to express any desired predicate/relation

over traces. This is because every trace t has a corresponding characteristic predicate X t which identifies

exactly the given trace. The characteristic predicate of a trace may be expressed as the distributed product
of the trace's elements

X t = Hne,tsos = tn

and hence any predicate/relation nlay be characterised as a disjunction of distributed products.

= vtl¢ toX t

For the purposes of this paper this theoretical completeness is sufficient, but, it should be noted that in
practice some form of sophisticated teulporal logic would be convenient for expressing and reasoning about

the properties of traces.
Trace predicates that may be expressed as distributed products or finite disjunctions of distributed

products are what Alpern and Schneider [2J refer to as safety properties. These are characterised formally
as: those predicates for which, any trace excluded by the predicate has a finite prefix, that has no extensions

that sat.is_" the predicate. The dual notion of liveness is also introduced, a liveness property being one for

which, every finite trace has an extension that satisfies the predicate. Informall3_ safety properties may be

violated in a finite time, while liveness properties may not. These notions of safety and liveness have taken

a central role in the search for tractable reasoning systems for distributed networks. A special form of safety

property is the invariant which may be expressed as the distributed product of a constant, function, that is

in the form (Hn • I) for some instantaneous predicate I.

4.2 IFO machine constructors

The basis of the IFO machine language is the I/O dynamic, which consists of a predicate transformer
of instantaneous states applied pointwise to an entire trace. In order to define this notion of "pointwise"

application, the distributed product operator is lifted to processes in nmch the same way that the binary

product was lifted.

defs

dfprod_def: H f _ ,It n * fn t,,

drprod_def: H R -_ ,lt s • (V n • R,_ t,, sn)

dprod_def: 17 p _ A¢o( V ¢[(HnoqS_) _ ¢ • (Ilnop,, On))

The distributed product operator builds processes which calculate output traces by iteratively applying

sequential programs pointwise to their input traces. Actually the distributed product operator is somewhat

too general to be considered a real process operator, since it allows the sequential programs to vary with tinle.

In order to realise this a process would need to have some innate sense of absolute time, where in actuality

processes are only able to gauge the passage of time through the explicit use of devices such as clocks and

counters. In light of this observation, we introduce a restricted form of distributed product. (do _od) in which

the iterating program may not vary with the passage of time. This operator we call the dynamic program,

or the do-loop, and presented in graphical form as an oval shaped network element as shown in Fig. 6(a).

defs dynamic_def: dopod & Hno p

\Vhile a complete approach to developing process networks would require the adoption of a particular

sequential programing language for expressing dynamic programs, for the purposes of this paper it. is adequate
to abstract, away from such details.

The basic introduction rule for dynamics allows a trace specification involving an invariant assumption

and an invariant effect to be refined to a dynamic specification.
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Fig. 6. IO process elements.

[HnoA/HnoE]
lemma spec_dynI:

do[ A / E]od
proof (simp)

It is sufficient to observe that every trace property achieved by an invariant effect is satisfied by achieving
the effect at. every point in the trace.

fix ¢ a assume al: Vn::NoA an and a2: Vbo(Vn::N.E an b,) _ ¢ b

show 3Oe(Vb.(Vn::NoO, bn) _ ¢ b) A (Vn boE aH b _ q5 b)

by (simp add: a2)

qed

For the most part the observations we made in regard of the strong decoupling required by the product

introduction rule apply again to this rule. An interesting point in this case is the fact that the decoupling

appears to restrict us to the treatment of invariant properties. In fact, the restriction merely introduces a
requirement to refine the trace specification _, weakening assumptions and strengthening effects to the point

where it is expressed by some invariant behaviour. Arbitrary trace properties may be freely used at any point

up to the introduction of a dynamic design. The restriction at this point is not artificial, but rather a natural

result of adopting the dynamic as the basic computational device. Of necessit35 a dynamic can only effect

behaviour that can be achieved by repeatedly performing the same (invariant) task. Nor is the choice of
the dynamic particularly unfortunate or artificial, the majority of embedded, control and communications

applications adopt exactly this architecture of tightly scheduled repetitive behaviour.

The main advantage in adopting dynamics as the basis for a network implementation language is the
observation that deterministic dynamic processes are causal. We don't attempt to define this notion in the

general case, but in the deterministic case a causal process is one for which the first n inputs uniquely

determine the first n outputs. That is, the process does not look forward in time when determining the
current output. Clearly this is a necessary requirement for any notion of process implementation.

Any process constructed from causal network elements using sequential and parallel hookup will also

be causal, but, unfortunately, causality is not necessarily preserved under feedback, nor is it sufficient to

preserve determinism under feedback. In order to preserve causality and determinism, we follow Stolen [28]

and introduce the stronger notion of guardedness. A (deterministic) process is guarded if and only if the

(n+l) _h output is uniquely determined by the first n inputs. For a detailed discussion of guarded trace

functions the reader is directed to Stolen [28].

The guardedness of a process may be ensured by introducing a delay or latch element into the network.
Latches are depicted in network graphs as small triangles, as shown in Fig. 6(b).

defs latch_def: a> _ <Atoa#t)

A feedback loop is causal if the enclosed (causal) process is guarded in the feedback component. This
may be ensured by restricting feedback loops to be of the form

! p>>(a>)x 1]

where p is a causal process. We call such feedback loops guarded-feedback loops and write

[a+--p]

as shorthand for the above process.
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Fig. 7. Elided network connectives.

In addition to dynamics and latches, the causal processes 1, <tzip> and (tunzip> are useful nelwork

connectives. We introduce abbreviations @ and @ for the processes (tzip) and (tunzip> respectively. We do

not explicitly represent these processes on network graphs, since it is straightforward to infer their presence

from the way in which explicit network elements are connected. For example, since a dynamic must have a

single input stream and a product must be between processes, if can be inferred that the diagram of Fig. 7

refers to the process

(@ >> dopod) × 1.

\Ve are now in a position to define the IFO network language.

- A dynamic machine do <t3 od is an IFO machine for any function f.

- The processes 1, @ and @ are IFO machines.

- If p and q are IFO machines then so are p >> q and p x q.

- If p is an IFO machine then so is [. a _ p.].

In the case that p is of the form

it is straightforward t.o show that

(3>> do <g) od>> @

uniquely constructs the feedback trace x which satisfies the recursive equations

x0=a

(Xn+l, tn) = g(xn, Sn), n 6 l",I

where s and t are respectively the global input and output. Thus, guarded feedbacks ensure the preservation

of both determinism and causality and all IFO machines are both deterministic and causal.

5 Some simple examples

In this section we present example refinements which illustrate the basic application of the network refinement

calculus.

5.1 Accumulating a sum

We begin with a straightforward, but thorough exercising of the refinement calculus approach. In order

to improve the readability of the example, we elide lambda bindings representing state variables, under the

convention that the names of the state variables and the context, identi_" the formal arguments to the lambda

abstraction. For example, given state variables x and y, we would write x = 3' for the relational abstraction

,{xyex = v.

A simple network application is to calculate a running sum of the values being passed along input s,

passing the results on output t. This may be expressed very straightforwardly as a relational specification.
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a a'
: +

s t

Fig. 8. The summing machine.

let ?SUM=(Vn*tn = _=0sk)

A simple solution to this problem is to use a feedback component a to store the previous value of the

sum. The relationship between a and s is:

let ?PSUM = ao= 0 A (Vn.a,+l = _=0sk)

The desired property of t can then be effeeted _ adding a to s at each cycle as shown in Fig. 8.

The refinement argument begins by introducing the feedback component.

have [ true / ?SUM]

[---

[ [ true / ?SUM] J

by (rule spec_FbI)

Next we focus on the design of the internal component, first coercing the feedback property on the input

side.

have [ true / ?S[\_I]

[---

[ ?PSL\U] >> ([ ?PSUM / ?SUM])

proof-apply coerceI and assumes (ted

Now we focus on refining the specification statement, requiring first, that b be a latched copy of t and

that t be the sum of a and s at each point.

have [ ?PS[\_I/?SUM]

[--

[?PSUM/b = (0#0 A (Vn.t. = a. + s.)]

proof (rule commits [rule_format])

The entailment is easily demonstrated by induction.

(led

The next step is to decompose the commitment relation, introducing relational sequencing and product,

then lifting these to the process level.

also have ...

[ ?PSUM /

(b = t A (Vn.t. = an + Sn))

>> ((b = O#a) x (t = s))]

(is _ E_ [_/?SELT >> _])

by (rule commits [rule_format], auto)

also have ...

[ ?PSUM/?SELT] >> ((0_,) x 1)
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proof -apply midI and spec_prod qed

Focusing on the smmning element, we begin by eliminating tim assumption.

have [ ?PSUM/?SELT]

[ true / ?SELTI

by (rule assumelV [rule_format], auto)

Since both b and t depend on both a and s, we zip them up to allow a dynamic implementation to use

them 1)oth. \Ve write as for the zipping of a and s and bt for the zipping of b and t.

also have ...

@ >> [ true/?S'ELT (tunzip as) (tunzip bt)] >2, @

by (rule spee_zipI)

Focusing on the dynamic element, we re-express the commitment as an relational invariant, so as to

implement it as a dynamic.

have [true/?SELT (tunzip as) (tunzip bt} ]

[true/Hn.(b= a + s A t = a + s)]

proof -apply commits qed
also have ...

do(ta', t) := (a + s, a + s))od

proof -apply spec_dynI qed

Thus, we have shown that the design of Fig. 8 achieves the required commitment, provided that the

feedback component properly stores the partial sums.

finally have [ true / ?SUM]

c

([?PSUM] >> @ >> do ((a', t):= (a+s, a+s)}od >> @) >> ((Or-) x I) .

The final step is then to elinfinate the feedback input coercion, _" demonstrating that the feedback

component does store the partial sums.

also have ...

[.0(-- @ >> do((a', t) := (a+s, a+s))od >> @ .]

proof -convert body to single function, then apply /b_coerceE qed

Thus we are now left with a pure IFO implementation of the summing machine specification.

finally have [ true / (V n • t n = Y_ = 0 s k) ]

[ 0_---- @ >> do((a', t) := (a+s, a+s)>od >> @ .J .

5.2 The magic of refinement

Our second example examines the potential dangers involved in introducing feedback assumptions and also

the protections built in to the refinement approach.

The main fear with making use of feedback assumptions is the possibility that the assumptions may
become self-fulfilling prophecies. Since an implementation need only achieve its commitment when its inputs
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sat ist)" the necessary assmnptions, might it not be possible to use the postulated feedback assumptions to

construct an implementation which achieves its conmfitment only because it has been assumed to do so?

For example, consider the following refinement sequence.

have[true/.ls teas t]

[--

! [,tlx, s) ,, A s x] >> [ A(x. s) ,, A s x / ,l(x, s) (x', t) • A s x A A s t ] ?

proof-appl9 spec_fbI, coerceI, assumeS, and commits qed

At this point in the design process we have set up a potentially dangerous situation. Since x is already

assumed to satisfy the required property A s x, we can get a refinement of the specification statement by

simply copying the input x across to the outputs x' and t.

also have ...

[. [,tlx, s)*A s x] >>(,t(x, s).(x, x))_.

proof -apply commitS, then funI qed

The design process seems to have gone completely wrong[ It. is clear that any further development from

this point could not possibly result in an implementation of the original specification, but what could have

gone wrong? We have carefully made use of trusted refinement laws and what we have arrived at is a design

which we know cannot achieve the desired result. Is there a problem with the definition of feedback, or worse

still a problem with the notion of refinement?

Neither of these. "_Vhat has happened is that we have made a bad design choice, a choice which has led

us to a complete dead end. It is not just. that we can no longer get. to an implementation that satisfies the

specification, it is no longer possible to get to any implementation at. all. In order to get code from the above

design we must eliminate the input coercion and this we can no longer do. This coercion is our protection

against making incorrect use of the feedback assumptions it allows us to introduce. It can only be removed

when we have been able to establish the required effect on the outputs absolutely and without recourse

to any feedback assumptions. This is not a unique phenomena in the refinement calculus, there are many

situations where we are allowed the freedom to introduce designs that have no implementation. The basic

argument in favour of risking such unsafe decisions is that the work required to ensure a design decision is

safe is comparable to the work required to construct an implementation. In most cases, it is far better to

risk the occasional deadend refinement sequence, than to be continually put to the work of checking that

every design decision is sat_.

That said, there are situations in which this is not the case, primarily in the development of large-

scale projects in which multiple developers and indeed teams of developers are involved. Postponing the

elimination of the input coercion until the final stage of design becomes a considerable risk when there are

numbers of developers responsible for the various subcomponents of a system. In such cases it is imperative

to have a method of eliminating the coercion before the commencement of separate development efforts on

subeomponents. Fortunately it is possible to introduce variants on spec_tbI and fb_coerceE which support a

more localised approach to dealing with feedback assumptions.

[A/El
lemma spec_fbI 2 :

{A} >> .[ [,l(x, a)eA a/A(x, a) (x', b)eEa b]!

by (simp)

lemma fb_coerceE2 :

IA}>> [[E] >> [,t(x,a)oAa/F])
fA(x. s)•A s A (3teF (x,s) (x, t))) _ E

[ [,t(x, a)eA a/F].]

by (simp, blast)

The important aspect of the variant feedback introduction rule spec_fbI2 is that the environment as-

sumption is retained external to the feedback loop. The variant coercion elimination rule fb_coerceEz then

makes use of this external assertion to allow the input coercion to be eliminated once the designer has fin-

ished making use of it in the design of the feedback component. Thus the coercion is eliminated at a more

appropriate time, prior to the commencement of subcomponent development efforts.
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Fig. 9. Using separate calculating units.

5.3 A liveness example

Our final example explores the use of liveness properties as feedback assmnptions. Even though the refinement

rules for introducing feedback assumptions do not distinguish between liveness and safety, the importance

this distinction has played in previous formalisms seems to demand that. some attention be paid to the

matter. However, we do feel justified in only considering a simple and somewhat contrived example of their
use.

A stream processing machine accepts intermittent communications of natural numbers on a channel al.

For each communication on channel al it must calculate the value fl (f2 alto) and output it on channel bl.

Since calculating the functions fl and f2 may take a number of cycles, we simply require that for every

communication on al there is eventually a response on bl. A similar requirement, is placed on a second

channel a2, with the exceptions that the processing functions are applied in the opposite order and that

outputs are placed on a second channel b2.

In formalising these requirements, we model the notion of an intermittent channel as a trace over the

natural numbers extended with a null element _L (N±). Thus a trace of an intermittent channel consists
of natural numbers intermixed with null conmmnieations. We write 5a, for the requirement that the n th

communication on the intermittent channel a is a proper communication. Formally, we express the eventual

calculation of some function t" by the following specification.

let ?CALC f = 2(a::(N±)*) (b::(N_)*)-

(V n. 5a. _ (3 m. n <_ m A bn, = f an))

The requirement on bl is then

and that on b2 is

?CALC (fl o f2) al bl

?CALC (f,_ oft) a2 b2.

Both these requirements are liveness properties, because they do not dictate a deadline for when the calcu-

lations must be finished. Of course, it is not really intended that arbitrarily long times be allowed for the

calculations. Rather this is a convenient way of leaving the determination of the calculation times until later

in the design process, when more is known about the mechanics of the calculations.

The symmetry of the problem suggests the possibility of decomposing the process into one element for

calculating fl and one for calculating f2. The idea would be to send inputs on al directly to the f2 processing

element, then to the f) processing element and vice versa for inputs on a_. The resulting process topology is
depicted in Fig. 9.

The first step is then to im roduce feedback components for passing these intermediate calculations

between the two processing elements. We retain the original assumption, so as to allow the early elimination

of the feedback coercion as described in the previous section.
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have[true/?CALC {fl o f2)al bl A ?CALC (f2 o fj) a2 be]

[-.-

{true} >>

[ [ true / ?CALC (fi o f2) al 51 A ?(¼LC (f2 o fj) a2 be ] .]

proof -appl?] spec_fbI2 qed

The strategy for using these intermediate channels is to perform f2 processing on messages from al, then

pass them along cj ibr f, processing before outputing them on bl. Similarly c2 is used for imernlediate

calculations of messages on the a2 channel.

This strategy is implemented by introducing the intended properties of the intermediate channels as

feedback assumptions, then using these properties to show that the proposed behaviour of the output channels

satisfies the original requirements.

also have ...

{true} >>

[[?CALCf2 a, cl A ?CALCf, a2 c2] >>

[ ?CALC f2 aj cl A ?CALC fl a2 c2/

?CALC (f, o f2) al bl A ?CALC (f2 o fl) a2 b2]]

proof -apply coerce/and assumes qed

also have ...

{true] >>

[[?CALC f2 a_ cL A ?CALC fl a2 c2] >>

[ ?CALC f2 al cl A ?CALC fj a2 c2 /

?CALC f2 al c,' A ?CALC fl a2 c2' A

?CALC fl cl 51 A ?CALC f2 c2 be]]

proof (intro monotonic_operators, rule commitS [rule_format])

Eventually calculating one function and then eventually calculating the other is equivalent to eventually

calculating the composition of tile two functions.

qed

The last step in this design is to remove the feedback coercions that we have now finished making use of.

also have ...

f--

[true} >>

[ [?CALC f2 aj cl A ?CALC fl a2 c2] >>

[ true /

?CALC f2 al cj ' A ?CALC fj a2 c2' A

?CALC fl cl bl A ?CALC f2 C2 b2].]

by (intro monotonic_operators, rule assumell _ [rule_format], auto)
also have ..,

[.[ true /

?CALC f2 al Cl' A ?CALC fl a2 c2' A

?CALC fl cl b, A ?CALC f2 c2 b2 ] .]

by (rule Po_coerceE2 [rule_format], auto)
also have ...

_E

[.[ true /

°'CALC f2 al CI' A _;C,atLC fl a2 C2 t A
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?CALC f _ cl b, A ?CALC f: c: be ] _.

by (intro monotonic_operators, rule assumeW [rule_format], auto)

The next step in the development would be to decompose the internal specification in parallel, but we

leave that. as an exercise for the interested reader. The purpose of this section was to demonstrate the use of

liveness properties as feedback assumptions, ill this case the properties ?CALC f2 al cl and ?CALC fl a: c2.

The result has been a fairly banal repetition of our previous treatments of feedback assmnptions. Indeed, the

most novel aspect, of the design derivation was the utilisation of the "localised" elimination rule fl)_coerceE:

that was introduced in Sect. 5.2. This is not. surprising, since the introduction rules for feedback coercions

make no distinction between liveness and safety prot)erties.

6 Conclusions

This paper has considered the application of the refinement calculus to the specification and design of

process networks consisting of sequential, parallel and feedback elements. The sequential aaM parallel hookup

operators are well known from the literature [3, 5], but to the best. of our knowledge the predicate transformer

feedback operator is a novel generalisation of the relational operator proposed by Katis et al [12].

In order to make use of feedback assumptions in process developments, we have suggested the novel use

of coercions on the feedback components as inputs. We have shown how these magical annotations may be

eliminated from the final implementation (fb_coerceE) or even from earlier stages of the design in the case of

large-scale developments (tb_coerceE2). The addition of these refinement laws makes the refinement calculus

a powerful tool for analysing process networks, capable of treating both safety and liveness properties with

equal simplicit3:

An important aspect of the resulting network refinement-calculus is its abstraction from any underlying

model of process computation. The network refinement-calculus is potentially able to support a wide range

of implementation models either in isolation or even in combination.

As a means of providing concrete examples of the network refinement-calculus in action, we have intro-

duced the IFO machine as a simp]e, abstract model of process computation. The basic building block of the

IFO language is the dynamic, a novel, if straightforward, generalisation of the product, operator. Specialised

refinement rules have been introduced to support IFO implementations and some examples given in the
refinement of IFO machines. Again we stress that the refinement calculus is not restricted in its application

to these IFO machines. It could just as easily have been applied to dataflow/stream-processing functions,
real-time automaton, state machines, or indeed any state-based model of process computation. Applying the

network refinement-calculus to event-based models may be more problematic since they sometimes lack a

clear distinction between input and output components.

It. is worth noting here that the various hookup introduction rules make no distinction between the use of

safety, and liveness properties, either in assumptions or in commitments. In fact. we had no need of introducing

the notions at all until we came to the introduction rule for IFO dynamics. The treatment of liveness has

generally been a problematic aspect of network design formalisms. Misra and Chandy [20] restricted their

approach entirely to safety properties, while Lamport's TLA [1] finesses the problem by introducing the

arcane notion of the closure of a liveness property to overcome a prohibition on the use of liveness properties
as feedback assumptions. More recently, Stolen has proposed a feedback verification rule which allows the

use of liveness properties, but once again it involves the difficult computation of closures and in addition

the introduction of an invariant property (with a safety component). All of these difficulties stem from the

treatment of feedback through the sophisticated notion of recursion, rather than through the more naive

notion of fixed-point. Although at the function level, these notions are almost identical, at the relational level

they differ vastly. A recursion-based view of feedback immediately places the focus on fnite traces and safety,

forcing an indirect treatment of infinite traces and hence liveness. By adopting the naive fixed-point approach

suggested by Katis et al [12], we have rendered the distinction between safety and liveness irrelevant. The

resulting feedback-hookup introduction rule is vastly, simpler, involving no calculations at all.

Apart. from the gains made in adopting the naive fixed-point view of feedback, the adoption of predicate-

transformer semantics offers significant gains in tractability over pure relational semantics. A significant
strength of predicate-transformer semantics is the ability to provide a clear, semantic separation between
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assumptions and connnitnmnts. While the assumption and commitment associated with a specification state-

ment are semantically unique, any given relational specification admits quite arbitrary assumption/conunitnmnt

decompositions which must be treated through the introduction of adaptation rules. The availability of (dis-

tinct) assertions and coercions also greatly adds to the power and flexibility of the refinement calculus, as

compellingly demonstrated by our approach to the introduction and elimination of feedback assumptions.

By introducing feedback properties as coercions we flag an intention to make the feedback property true. If

assertions were used, it would instead indicate that we were assuming that they were already true. Such a

distinction could not be made in a pure relational model.

A number of future research directions are suggested by the issues raised in this paper. The interface

between trace-based design and sequential program code needs considerable elaboration. It would certainly

be useful to be able to introduce more general program operators than the simple nont.ernfinating loop

of spec_dynl. This might allow, tbr example, the clear deconlposition of a program into initialisation and

processing phases. An importam future direction of this work is also t.o apply the refinement, calculus to truly

real-time processes. In order to do this a computation model based on continuous functions of real-time [16]

may be adopted. However, it will require considerable development of the Isabelle real-analysis environment

to make this feasible. Work in this direction is currently underway in collaboration with the SVRC at the

University of Queensland.
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